文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Antibiotic-based small molecular micelles combined with photodynamic therapy for bacterial infections.

作者信息

Yang Lijiao, Song Shaomin, Yin Meihui, Yang Min, Yan Daoping, Wan Xiaohui, Xiao Jipeng, Jiang Yuchen, Yao Yongchao, Luo Jianbin

机构信息

College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.

出版信息

Asian J Pharm Sci. 2023 May;18(3):100810. doi: 10.1016/j.ajps.2023.100810. Epub 2023 Apr 3.


DOI:10.1016/j.ajps.2023.100810
PMID:37274927
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10236462/
Abstract

The appearance of multidrug-resistant bacteria and the formation of bacterial biofilms have necessitated the development of alternative antimicrobial therapeutics. Antibiotics conjugated with or embedded in nano-drug carriers show a great potential and advantage over free drugs, but the mass proportion of carriers generally exceeds 90% of the nano-drug, resulting in low drug loading and limited therapeutic output. Herein, we fabricated a nanocarrier using antibiotics as the building blocks, minimizing the use of carrier materials, significantly increasing the drug loading content and treatment effect. Firstly, we conjugated betaine carboxylate with ciprofloxacin (CIP) through an ester bond to form the amphiphilic conjugate (CIP-CB), which self-assembled into micelles (CIP-CBMs) in aqueous solutions, with a CIP loading content as high as 65.4% and pH-induced surface charge reversal properties. Secondly, a model photosensitizer (5, 10, 15, 20-tetraphenylporphyrin (TPP)) was encapsulated in CIP-CBMs, generating infection-targeted photodynamic/antibiotic combined nanomedicines (denoted as TPP@CIP-CBMs). Upon accumulation at infection sites or in deep bacterial biofilms, the ester bond between the betaine carboxylate and CIP is cleaved to release free TPP and CIP, leading to a synergetic antibacterial and antibiofilm activity and .

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/46e314e448f1/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/ebb47a7f6de5/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/198da716212e/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/817d90a396e1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/2eb6d2837424/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/4821d7a27185/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/99de5bdc2da8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/6bd4988b2e5d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/daf4d4f9fa29/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/74f08685f201/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/de1258e587b5/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/46e314e448f1/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/ebb47a7f6de5/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/198da716212e/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/817d90a396e1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/2eb6d2837424/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/4821d7a27185/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/99de5bdc2da8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/6bd4988b2e5d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/daf4d4f9fa29/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/74f08685f201/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/de1258e587b5/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06c/10236462/46e314e448f1/gr9.jpg

相似文献

[1]
Antibiotic-based small molecular micelles combined with photodynamic therapy for bacterial infections.

Asian J Pharm Sci. 2023-5

[2]
Ciprofloxacin conjugated gold nanorods with pH induced surface charge transformable activities to combat drug resistant bacteria and their biofilms.

Mater Sci Eng C Mater Biol Appl. 2021-9

[3]
Lipase and pH-responsive diblock copolymers featuring fluorocarbon and carboxyl betaine for methicillin-resistant staphylococcus aureus infections.

J Control Release. 2024-5

[4]
Surface charge switchable fluorinated small molecular micelles for enhanced photodynamic therapy for bacterial infections.

J Colloid Interface Sci. 2025-1-15

[5]
Antibacterial Micelles with Vancomycin-Mediated Targeting and pH/Lipase-Triggered Release of Antibiotics.

ACS Appl Mater Interfaces. 2018-10-19

[6]
-Mediated Synthesis and Characterizations of Ciprofloxacin Encapsulated into Ag/TiO/FeO/CS Nanocomposite: A Therapeutic Solution against Multidrug Resistant Strains of Livestock Infectious Diseases.

Pharmaceutics. 2022-8-17

[7]
Macrophage Polarization Induced by Bacteria-Responsive Antibiotic-Loaded Nanozymes for Multidrug Resistance-Bacterial Infections Management.

Small. 2023-3

[8]
Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria "E. coli; P. aeruginosa; Saureus; and MRSA" and their infections.

J Control Release. 2022-9

[9]
Synergy between pH- and hypoxia-responsiveness in antibiotic-loaded micelles for eradicating mature, infectious biofilms.

Acta Biomater. 2022-12

[10]
Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection.

Acta Biomater. 2022-4-1

引用本文的文献

[1]
Biomaterials mediated 3R (remove-remodel-repair) strategy: holistic management of Helicobacter pylori infection.

J Nanobiotechnology. 2025-7-1

[2]
From basic to clinical translation: advances and perspectives of photodynamic nanodrugs.

Front Pharmacol. 2025-5-20

[3]
Ammonium-Containing Methacrylic Polymer Brushes with Adjustable Hydrophilicity: Synthesis and Properties in Aqueous Solutions.

Polymers (Basel). 2025-4-27

[4]
Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology. 2025-1-23

[5]
Charge-Reversal Nano-Drug Delivery Systems in the Tumor Microenvironment: Mechanisms, Challenges, and Therapeutic Applications.

Int J Mol Sci. 2024-9-10

[6]
The Use of Photoactive Polymeric Nanoparticles and Nanofibers to Generate a Photodynamic-Mediated Antimicrobial Effect, with a Special Emphasis on Chronic Wounds.

Pharmaceutics. 2024-2-5

本文引用的文献

[1]
Surface-Charge-Switchable and Size-Transformable Thermosensitive Nanocomposites for Chemo-Photothermal Eradication of Bacterial Biofilms and .

ACS Appl Mater Interfaces. 2022-2-23

[2]
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.

Lancet. 2022-2-12

[3]
Infection microenvironment-related antibacterial nanotherapeutic strategies.

Biomaterials. 2022-1

[4]
Ciprofloxacin conjugated gold nanorods with pH induced surface charge transformable activities to combat drug resistant bacteria and their biofilms.

Mater Sci Eng C Mater Biol Appl. 2021-9

[5]
Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives.

Adv Drug Deliv Rev. 2021-10

[6]
Oxygen Self-Supplying Nanotherapeutic for Mitigation of Tissue Hypoxia and Enhanced Photodynamic Therapy of Bacterial Keratitis.

ACS Appl Mater Interfaces. 2021-7-28

[7]
Dandelion flower-like micelles.

Chem Sci. 2019-12-3

[8]
Rough Carbon-Iron Oxide Nanohybrids for Near-Infrared-II Light-Responsive Synergistic Antibacterial Therapy.

ACS Nano. 2021-4-27

[9]
Proximate and ultimate causes of the bactericidal action of antibiotics.

Nat Rev Microbiol. 2021-2

[10]
Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release.

Biomaterials. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索