Suppr超能文献

在新冠疫情大流行期间优化稀缺 PCR 检测的分配。

Optimal allocation of scarce PCR tests during the COVID-19 pandemic.

机构信息

Frankfurt School of Finance & Management, Frankfurt, Germany.

出版信息

PLoS One. 2023 Jun 5;18(6):e0285083. doi: 10.1371/journal.pone.0285083. eCollection 2023.

Abstract

BACKGROUND/AIM: During the coronavirus disease (COVID-19) pandemic, Germany and various other countries experienced a shortage of polymerase chain reaction (PCR) laboratory tests due to the highly transmissible SARS-CoV-2 Omicron variant that drove an unprecedented surge of infections. This study developed a mathematical model that optimizes diagnostic capacity with lab-based PCR testing.

METHODS

A mathematical model was constructed to determine the value of PCR testing in relation to the pre-test probability of COVID-19. Furthermore, the model derives the lower and upper bounds for the threshold pre-test probability of the designated priority group. The model was applied in a German setting using the PCR test-positivity rate at the beginning of February 2022.

RESULTS

The value function of PCR testing is bell-shaped with respect to the pre-test probability, reaching a maximum at a pre-test probability of 0.5. Based on a PCR test-positivity rate of 0.3 and assuming that at least two thirds of the tested population have a pre-test probability below, lower and higher pre-test probability thresholds are ≥ 0.1 and 0.7, respectively. Therefore, individuals who have a 25% likelihood of testing positive because they exhibit symptoms should be a higher priority for PCR testing. Furthermore, a positive rapid antigen test in asymptomatic individuals with no known exposure to COVID-19 should be confirmed using PCR. Yet, symptomatic individuals with a positive RAT should be excluded from PCR testing.

CONCLUSION

A mathematical model that allows for the optimal allocation of scarce PCR tests during the COVID-19 pandemic was developed.

摘要

背景/目的:在冠状病毒病(COVID-19)大流行期间,由于高度传染性的 SARS-CoV-2 奥密克戎变体导致感染人数空前激增,德国和其他许多国家的聚合酶链反应(PCR)实验室检测出现短缺。本研究开发了一种数学模型,以优化基于实验室的 PCR 检测的诊断能力。

方法

构建了一个数学模型,以确定 PCR 检测与 COVID-19 的术前概率之间的关系。此外,该模型还推导出指定优先群体术前概率的下限和上限。该模型应用于德国,使用 2022 年 2 月初的 PCR 检测阳性率。

结果

PCR 检测的价值函数与术前概率呈钟形关系,在术前概率为 0.5 时达到最大值。基于 PCR 检测阳性率为 0.3 并假设至少三分之二的受检人群术前概率低于该值,较低和较高的术前概率阈值分别为≥0.1 和 0.7。因此,具有 25%检测阳性可能性的个体,因为他们表现出症状,应该优先进行 PCR 检测。此外,对于无症状且没有已知 COVID-19 接触史的个体,应使用 PCR 确认快速抗原检测呈阳性。然而,具有阳性 RAT 的有症状个体应排除在 PCR 检测之外。

结论

开发了一种数学模型,可在 COVID-19 大流行期间优化稀缺 PCR 检测的分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a0b/10241352/732564f8226a/pone.0285083.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验