Suppr超能文献

利用反射光谱捕捉进化相关性模式,以建模和监测生物多样性。

Capturing patterns of evolutionary relatedness with reflectance spectra to model and monitor biodiversity.

机构信息

US Geological Survey Western Geographic Science Center, Moffett Field, CA 94035.

NASA Ames Research Center, Moffett Field, CA 94035.

出版信息

Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2215533120. doi: 10.1073/pnas.2215533120. Epub 2023 Jun 5.

Abstract

Biogeographic history can set initial conditions for vegetation community assemblages that determine their climate responses at broad extents that land surface models attempt to forecast. Numerous studies have indicated that evolutionarily conserved biochemical, structural, and other functional attributes of plant species are captured in visible-to-short wavelength infrared, 400 to 2,500 nm, reflectance properties of vegetation. Here, we present a remotely sensed phylogenetic clustering and an evolutionary framework to accommodate spectra, distributions, and traits. Spectral properties evolutionarily conserved in plants provide the opportunity to spatially aggregate species into lineages (interpreted as "lineage functional types" or LFT) with improved classification accuracy. In this study, we use Airborne Visible/Infrared Imaging Spectrometer data from the 2013 Hyperspectral Infrared Imager campaign over the southern Sierra Nevada, California flight box, to investigate the potential for incorporating evolutionary thinking into landcover classification. We link the airborne hyperspectral data with vegetation plot data from 1372 surveys and a phylogeny representing 1,572 species. Despite temporal and spatial differences in our training data, we classified plant lineages with moderate reliability (Kappa = 0.76) and overall classification accuracy of 80.9%. We present an assessment of classification error and detail study limitations to facilitate future LFT development. This work demonstrates that lineage-based methods may be a promising way to leverage the new-generation high-resolution and high return-interval hyperspectral data planned for the forthcoming satellite missions with sparsely sampled existing ground-based ecological data.

摘要

生物地理历史可以为植被群落组合设定初始条件,从而决定它们在广阔范围内对气候的响应,而陆面模式试图对其进行预测。许多研究表明,植物物种在进化上保守的生化、结构和其他功能属性都体现在可见光到短波红外、400 到 2500nm 的植被反射率特性中。在这里,我们提出了一种基于遥感的系统发育聚类和进化框架,以适应光谱、分布和特征。在植物中进化上保守的光谱特性为将物种空间聚集到谱系中(解释为“谱系功能类型”或 LFT)提供了机会,从而提高分类精度。在这项研究中,我们使用 2013 年在加利福尼亚州南部内华达山脉上空进行的高光谱红外成像仪实验中获取的机载可见/红外成像光谱仪数据,来研究将进化思维纳入土地覆盖分类的潜力。我们将机载高光谱数据与来自 1372 次调查的植被图数据以及代表 1572 个物种的系统发育树联系起来。尽管我们的训练数据存在时间和空间差异,但我们以中等可靠性(Kappa=0.76)和 80.9%的整体分类准确性对植物谱系进行了分类。我们对分类误差进行了评估,并详细说明了研究的局限性,以促进未来 LFT 的发展。这项工作表明,基于谱系的方法可能是利用计划用于即将到来的卫星任务的新一代高分辨率、高回波间隔高光谱数据的一种有前途的方法,同时利用现有的基于地面的生态数据进行稀疏采样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bef/10268299/1602ed6cfe41/pnas.2215533120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验