School of Mathematical and Statistical Science, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India.
Chaos. 2023 Jun 1;33(6). doi: 10.1063/5.0126559.
Seasonal effects powerfully shape the population dynamics with periodic climate changes because species naturally adjust their dynamics with seasonal variations. In response to these effects, sometimes population dynamics exhibit synchrony or generate chaos. However, synchronized dynamics enhance species' persistence in naturally unstable environments; thus, it is imperative to identify parameters that alter the dynamics of an ecosystem and bring it into synchrony. This study examines how ecological parameters enable species to adapt their dynamics to seasonal changes and achieve phase synchrony within ecosystems. For this, we incorporate seasonal effects as a periodic sinusoidal function into a tri-trophic food chain system where two crucial bio-controlling parameters, Allee and refugia effects, are already present. First, it is shown that the seasonal effects disrupt the limit cycle and bring chaos to the system. Further, we perform rigorous mathematical analysis to perform the dynamical and analytical properties of the nonautonomous version of the system. These properties include sensitive dependence on initial condition (SDIC), sensitivity analysis, bifurcation results, the positivity and boundedness of the solution, permanence, ultimate boundedness, and extinction scenarios of species. The SDIC characterizes the presence of chaotic oscillations in the system. Sensitivity analysis determines the parameters that significantly affect the outcome of numerical simulations. The bifurcation study concerning seasonal parameters shows a higher dependency of species on the frequency of seasonal changes than the severity of the season. The bifurcation study also examines the bio-controlling parameters and reveals various dynamic states within the system, such as fold, transcritical branch points, and Hopf points. Moreover, the mathematical analysis of our seasonally perturbed system reveals the periodic coexistence of all species and a globally attractive solution under certain parametric constraints. Finally, we examine the role of essential parameters that contribute to phase synchrony. For this, we numerically investigate the defining role of the coupling dimension coefficient, bio-controlling parameters, and other parameters associated with seasonality. This study infers that species can tune their dynamics to seasonal effects with low seasonal frequency, whereas the species' tolerance for the severity of seasonal effects is relatively high. The research also sheds light on the correlation between the degree of phase synchrony, prey biomass levels, and the severity of seasonal forcing. This study offers valuable insights into the dynamics of ecosystems affected by seasonal perturbations, with implications for conservation and management strategies.
季节效应对周期性气候变化下的种群动态具有强大的影响力,因为物种会根据季节性变化自然调整其动态。为了应对这些影响,种群动态有时会表现出同步或产生混沌。然而,同步动态增强了物种在自然不稳定环境中的生存能力;因此,确定改变生态系统动态并使其同步的参数至关重要。本研究探讨了生态参数如何使物种适应季节性变化并在生态系统内实现相位同步。为此,我们将季节性影响作为周期性正弦函数纳入到一个三营养级食物链系统中,该系统已经存在两个关键的生物控制参数,即阿利效应和避难所效应。首先,结果表明季节性效应会破坏极限环并使系统产生混沌。此外,我们进行了严格的数学分析,以研究系统非自治版本的动力学和分析性质。这些性质包括对初始条件的敏感依赖性(SDIC)、敏感性分析、分岔结果、解的正定性和有界性、持久性、最终有界性和物种灭绝场景。SDIC 特征在于系统中存在混沌振荡。敏感性分析确定了对数值模拟结果有重大影响的参数。关于季节性参数的分岔研究表明,物种对季节性变化频率的依赖性高于对季节严重程度的依赖性。分岔研究还研究了生物控制参数,并揭示了系统内的各种动态状态,如折叠、跨临界分支点和 Hopf 点。此外,我们季节性受扰系统的数学分析揭示了在某些参数约束下所有物种的周期性共存和全局吸引解。最后,我们研究了有助于相位同步的基本参数的作用。为此,我们在数值上研究了耦合维系数、生物控制参数和与季节性相关的其他参数对定义相位同步的作用。本研究推断,物种可以通过低季节性频率来调整其对季节性影响的动态,而物种对季节性影响严重程度的容忍度相对较高。该研究还揭示了相位同步程度、猎物生物量水平和季节性强迫严重程度之间的相关性。本研究为受季节性干扰的生态系统动态提供了有价值的见解,对保护和管理策略具有重要意义。