Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
Department Chemistry, East Carolina University, Greenville, NC, USA.
Biochem Biophys Res Commun. 2023 Aug 30;670:47-54. doi: 10.1016/j.bbrc.2023.05.066. Epub 2023 May 27.
Lipoxygenases (LOXs) catalyze the oxidation of polyunsaturated fatty acids and synthesize oxylipin products that drive important cellular signaling processes in plants and animals. While there has been indirect evidence presented for the interaction of mammalian LOXs with membranes, a quantitative study of the molecular details of LOX-membrane interactions is lacking. Here, we mimicked biological membranes using surface plasmon resonance (SPR) sensor chips derivatized with 2-D planar lipophilic anchors (2D LP) to capture liposomes of varying phospholipid compositions that self-assemble into lipid bilayers on the SPR chip. The sensor chip surfaces were then used to investigate the membrane-binding properties of model LOX enzymes. SPR binding assays displayed reproducible and stable liposome capture to the sensor chip surface that allowed for the detailed characterization of LOX-membrane interactions. Our studies demonstrate a calcium-dependence for the membrane binding activities of coral 8R-LOX and human 15-LOX-2. Furthermore, our data confirm the importance of key membrane insertion loop residues in each of these LOX enzymes for membrane binding activity. Experiments utilizing model plant and human LOXs reveal differences in membrane-binding specificities. Our study establishes and validates a robust SPR-based platform using 2D LP sensor chips that allows for the detailed study of LOX-membrane interactions under different experimental conditions, including altered membrane compositions. Collectively, this investigation improves our overall understanding of LOX-membrane interaction properties, and our SPR-based approach holds potential for future use in the development of LOX-based therapeutics.
脂氧合酶(LOXs)催化多不饱和脂肪酸的氧化,并合成氧化脂质产物,从而驱动动植物细胞中的重要信号转导过程。虽然有间接证据表明哺乳动物 LOXs 与膜相互作用,但对 LOX-膜相互作用的分子细节缺乏定量研究。在这里,我们使用表面等离子体共振(SPR)传感器芯片模拟生物膜,该传感器芯片用 2-D 平面疏水性锚(2D LP)衍生化,以捕获具有不同磷脂组成的脂质体,这些脂质体自组装成脂质双层在 SPR 芯片上。然后,使用传感器芯片表面研究模型 LOX 酶的膜结合特性。SPR 结合测定法显示出可重复且稳定的脂质体捕获到传感器芯片表面,从而可以详细表征 LOX-膜相互作用。我们的研究表明珊瑚 8R-LOX 和人 15-LOX-2 的膜结合活性依赖于钙。此外,我们的数据证实了这些 LOX 酶中关键的膜插入环残基对于膜结合活性的重要性。利用模型植物和人 LOX 的实验揭示了膜结合特异性的差异。我们的研究建立并验证了一种基于 SPR 的强大平台,该平台使用 2D LP 传感器芯片,允许在不同实验条件下(包括改变的膜组成)详细研究 LOX-膜相互作用。总的来说,这项研究提高了我们对 LOX-膜相互作用特性的整体理解,并且我们基于 SPR 的方法有可能用于开发基于 LOX 的治疗方法。