Suppr超能文献

PPM 3.0 对平面和弯曲膜中蛋白质的空间排布。

Spatial arrangement of proteins in planar and curved membranes by PPM 3.0.

机构信息

College of Pharmacy, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA.

Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Protein Sci. 2022 Jan;31(1):209-220. doi: 10.1002/pro.4219. Epub 2021 Nov 8.

Abstract

Cellular protrusions, invaginations, and many intracellular organelles have strongly curved membrane regions. Transmembrane and peripheral membrane proteins that induce, sense, or stabilize such regions cannot be properly fitted into a single flat bilayer. To treat such proteins, we developed a new method and a web tool, PPM 3.0, for positioning proteins in curved or planar, single or multiple membranes. This method determines the energetically optimal spatial position, the hydrophobic thickness, and the radius of intrinsic curvature of a membrane-deforming protein structure by arranging it in a single or several sphere-shaped or planar membrane sections. In addition, it can define the lipid-embedded regions of a protein that simultaneously spans several membranes or determine the optimal position of a peptide in a spherical micelle. The PPM 3.0 web server operates with 17 types of biological membranes and 4 types of artificial bilayers. It is publicly available at https://opm.phar.umich.edu/ppm_server3. PPM 3.0 was applied to identify and characterize arrangements in membranes of 128 proteins with a significant intrinsic curvature, such as BAR domains, annexins, Piezo, and MscS mechanosensitive channels, cation-chloride cotransporters, as well as mitochondrial ATP synthases, calcium uniporters, and TOM complexes. These proteins form large complexes that are mainly localized in mitochondria, plasma membranes, and endosomes. Structures of bacterial drug efflux pumps, AcrAB-TolC, MexAB-OrpM, and MacAB-TolC, were positioned in both membranes of the bacterial cell envelop, while structures of multimeric gap-junction channels were arranged in two opposed cellular membranes.

摘要

细胞膜的突起、内陷和许多细胞内细胞器都具有强烈弯曲的膜区。能够诱导、感知或稳定这些区域的跨膜和外周膜蛋白不能被正确地嵌入到单个平面双层中。为了处理这类蛋白质,我们开发了一种新方法和一个网络工具,即 PPM 3.0,用于在弯曲或平面的单个或多个膜中定位蛋白质。该方法通过将膜变形蛋白结构排列在单个或几个球形或平面膜部分中,确定其在能量上最优化的空间位置、疏水性厚度和固有曲率半径。此外,它可以定义同时跨越多个膜的蛋白质的脂质嵌入区域,或者确定球形胶束中肽的最佳位置。PPM 3.0 网络服务器可与 17 种生物膜和 4 种人工双层一起运行。它可在 https://opm.phar.umich.edu/ppm_server3 上公开获取。PPM 3.0 被应用于识别和描述 128 种具有显著固有曲率的蛋白质在膜中的排列,如 BAR 结构域、膜粘连蛋白、Piezo 和 MscS 机械敏感通道、阳离子-氯离子共转运体,以及线粒体 ATP 合酶、钙单向转运体和 TOM 复合物。这些蛋白质形成的大复合物主要定位于线粒体、质膜和内体。细菌药物外排泵 AcrAB-TolC、MexAB-OrpM 和 MacAB-TolC 的结构被定位在细菌细胞膜的两个膜中,而多聚体间隙连接通道的结构则被排列在两个相对的细胞膜中。

相似文献

1
Spatial arrangement of proteins in planar and curved membranes by PPM 3.0.
Protein Sci. 2022 Jan;31(1):209-220. doi: 10.1002/pro.4219. Epub 2021 Nov 8.
2
OPM database and PPM web server: resources for positioning of proteins in membranes.
Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6. doi: 10.1093/nar/gkr703. Epub 2011 Sep 2.
3
Positioning of proteins in membranes: a computational approach.
Protein Sci. 2006 Jun;15(6):1318-33. doi: 10.1110/ps.062126106.
4
Molecular mechanisms of membrane deformation by I-BAR domain proteins.
Curr Biol. 2009 Jan 27;19(2):95-107. doi: 10.1016/j.cub.2008.12.029. Epub 2009 Jan 15.
6
OPM: orientations of proteins in membranes database.
Bioinformatics. 2006 Mar 1;22(5):623-5. doi: 10.1093/bioinformatics/btk023. Epub 2006 Jan 5.
8
Solvation models and computational prediction of orientations of peptides and proteins in membranes.
Methods Mol Biol. 2013;1063:125-42. doi: 10.1007/978-1-62703-583-5_7.
9
Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes.
J Biol Chem. 2007 Mar 30;282(13):9996-10004. doi: 10.1074/jbc.M611180200. Epub 2007 Jan 31.
10
Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures.
Nat Struct Mol Biol. 2011 Jul 10;18(8):902-7. doi: 10.1038/nsmb.2079.

引用本文的文献

1
Structural insights into the vitamin K-dependent γ-carboxylation of osteocalcin.
Cell Res. 2025 Sep 2. doi: 10.1038/s41422-025-01161-0.
2
Mechanism and function of GPR3 regulated by a negative allosteric modulator.
Nat Commun. 2025 Aug 27;16(1):7988. doi: 10.1038/s41467-025-63422-1.
3
Sequence variability of BamA and FadL candidate vaccinogens suggests divergent evolutionary paths of outer membrane proteins.
J Bacteriol. 2025 Aug 21;207(8):e0015925. doi: 10.1128/jb.00159-25. Epub 2025 Jul 14.
4
Irreversible furin cleavage site exposure renders immature tick-borne flaviviruses fully infectious.
Nat Commun. 2025 Aug 12;16(1):7491. doi: 10.1038/s41467-025-62750-6.
6
Steric control of signaling bias in the immunometabolic receptor GPR84.
bioRxiv. 2025 Aug 2:2025.07.30.667614. doi: 10.1101/2025.07.30.667614.
7
The bacterial ESCRT-III PspA rods thin lipid tubules and increase membrane curvature through helix α0 interactions.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2506286122. doi: 10.1073/pnas.2506286122. Epub 2025 Aug 4.
8
The EMC acts as a chaperone for membrane proteins.
Nat Commun. 2025 Aug 2;16(1):7097. doi: 10.1038/s41467-025-62109-x.
10
Revisiting phage tail spike architecture: evidence for undetected receptor-binding proteins in with non-contractile tails.
Front Microbiol. 2025 Jul 16;16:1625765. doi: 10.3389/fmicb.2025.1625765. eCollection 2025.

本文引用的文献

1
Thermodynamics-Based Molecular Modeling of α-Helices in Membranes and Micelles.
J Chem Inf Model. 2021 Jun 28;61(6):2884-2896. doi: 10.1021/acs.jcim.1c00161. Epub 2021 May 24.
2
Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures.
Nucleic Acids Res. 2021 Jul 2;49(W1):W431-W437. doi: 10.1093/nar/gkab314.
3
On the molecular nature of large-pore channels.
J Mol Biol. 2021 Aug 20;433(17):166994. doi: 10.1016/j.jmb.2021.166994. Epub 2021 Apr 16.
4
Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2.
Nat Commun. 2021 Feb 17;12(1):1100. doi: 10.1038/s41467-021-21362-6.
5
Atomic structure of human TOM core complex.
Cell Discov. 2020 Sep 29;6:67. doi: 10.1038/s41421-020-00198-2. eCollection 2020.
7
Structure of intact human MCU supercomplex with the auxiliary MICU subunits.
Protein Cell. 2021 Mar;12(3):220-229. doi: 10.1007/s13238-020-00776-w.
9
Structure and mechanism of the mitochondrial Ca uniporter holocomplex.
Nature. 2020 Jun;582(7810):129-133. doi: 10.1038/s41586-020-2309-6. Epub 2020 May 20.
10
Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly.
Nat Plants. 2020 Mar;6(3):314-320. doi: 10.1038/s41477-020-0610-x. Epub 2020 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验