Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
Abbe Center of Photonics and Faculty of Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany.
Nat Commun. 2023 Jun 5;14(1):3247. doi: 10.1038/s41467-023-39021-3.
Accurate characterization of diffusing nanoscale species is increasingly important for revealing processes at the nanoscale, with fiber-assisted nanoparticle-tracking-analysis representing a new and promising approach in this field. In this work, we uncover the potential of this approach for the characterization of very small nanoparticles (<20 nm) through experimental studies, statistical analysis and the employment of a sophisticated fiber and chip design. The central results is the characterization of diffusing nanoparticles as small as 9 nm with record-high precision, corresponding to the smallest diameter yet determined for an individual nanoparticle with nanoparticle-tracking-analysis using elastic light scattering alone. Here, the detectable scattering cross-section is limited only by the background scattering of the ultrapure water, thus reaching the fundamental limit of Nanoparticle-Tracking-Analysis in general. The obtained results outperform other realizations and allow access to previously difficult to address application fields such as understanding nanoparticle growth or control of pharmaceuticals.
准确描述扩散的纳米级物质对于揭示纳米尺度的过程越来越重要,纤维辅助的纳米颗粒跟踪分析在该领域代表了一种新的、有前途的方法。在这项工作中,我们通过实验研究、统计分析和采用复杂的光纤和芯片设计,揭示了这种方法在非常小的纳米颗粒(<20nm)表征方面的潜力。核心结果是,我们能够以创纪录的高精度对扩散的纳米颗粒进行表征,其最小粒径可达 9nm,这是迄今为止仅使用弹性光散射的纳米颗粒跟踪分析方法确定的最小单个纳米颗粒的直径。在这里,可检测的散射截面仅受超纯水的背景散射限制,因此达到了纳米颗粒跟踪分析的普遍的基本限制。所得到的结果优于其他实现方案,并允许进入以前难以解决的应用领域,如理解纳米颗粒的生长或控制药物。