Gui Fengji, Foerster Ronny, Wieduwilt Torsten, Zeisberger Matthias, Kim Jisoo, Schmidt Markus A
The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745 Jena, Germany.
Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany.
Nanophotonics. 2024 May 20;13(17):3135-3145. doi: 10.1515/nanoph-2024-0139. eCollection 2024 Jul.
Here, we present the concept of flat-field capillary-assisted nanoparticle tracking analysis for the characterization of fast diffusing nano-objects. By combining diffusion confinement and spatially invariant illumination, i.e., flat-fields, within a fiber-interfaced on-chip environment, ultra-long trajectories of fast diffusing objects within large microchannels have been measured via diffraction-limited imaging. Our study discusses the design procedure, explains potential limitations, and experimentally confirms flat-field formation by tracking gold nanospheres. The presented concept enables generating flat-fields in a novel on-chip optofluidic platform for the characterization of individual nano-objects for fundamental light/matter investigations or applications in bioanalytics and nanoscale material science.
在此,我们提出了用于表征快速扩散纳米物体的平场毛细管辅助纳米颗粒跟踪分析概念。通过在光纤接口的片上环境中结合扩散限制和空间不变照明(即平场),已通过衍射极限成像测量了大型微通道内快速扩散物体的超长轨迹。我们的研究讨论了设计过程,解释了潜在的局限性,并通过跟踪金纳米球在实验上证实了平场的形成。所提出的概念能够在新型片上光流体平台中产生平场,用于表征单个纳米物体,以进行基础光/物质研究或用于生物分析和纳米材料科学应用。