Suppr超能文献

RegiSTORM:用于多色随机光学重建显微镜的通道注册。

RegiSTORM: channel registration for multi-color stochastic optical reconstruction microscopy.

机构信息

Department of Materials, Imperial College London, London, SW7 2AZ, UK.

Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.

出版信息

BMC Bioinformatics. 2023 Jun 5;24(1):237. doi: 10.1186/s12859-023-05320-1.

Abstract

BACKGROUND

Stochastic optical reconstruction microscopy (STORM), a super-resolution microscopy technique based on single-molecule localizations, has become popular to characterize sub-diffraction limit targets. However, due to lengthy image acquisition, STORM recordings are prone to sample drift. Existing cross-correlation or fiducial marker-based algorithms allow correcting the drift within each channel, but misalignment between channels remains due to interchannel drift accumulating during sequential channel acquisition. This is a major drawback in multi-color STORM, a technique of utmost importance for the characterization of various biological interactions.

RESULTS

We developed RegiSTORM, a software for reducing channel misalignment by accurately registering STORM channels utilizing fiducial markers in the sample. RegiSTORM identifies fiducials from the STORM localization data based on their non-blinking nature and uses them as landmarks for channel registration. We first demonstrated accurate registration on recordings of fiducials only, as evidenced by significantly reduced target registration error with all the tested channel combinations. Next, we validated the performance in a more practically relevant setup on cells multi-stained for tubulin. Finally, we showed that RegiSTORM successfully registers two-color STORM recordings of cargo-loaded lipid nanoparticles without fiducials, demonstrating the broader applicability of this software.

CONCLUSIONS

The developed RegiSTORM software was demonstrated to be able to accurately register multiple STORM channels and is freely available as open-source (MIT license) at https://github.com/oystein676/RegiSTORM.git and https://doi.org/10.5281/zenodo.5509861 (archived), and runs as a standalone executable (Windows) or via Python (Mac OS, Linux).

摘要

背景

基于单分子定位的随机光学重建显微镜(STORM)是一种超分辨率显微镜技术,已广泛用于描述亚衍射极限目标。然而,由于图像采集时间长,STORM 记录容易发生样品漂移。现有的互相关或基准标记算法可以在每个通道内纠正漂移,但由于在连续通道采集过程中通道间漂移的积累,通道间仍存在不对准。这是多色 STORM 的一个主要缺点,多色 STORM 对于各种生物相互作用的描述至关重要。

结果

我们开发了 RegiSTORM,这是一种利用样品中的基准标记准确注册 STORM 通道的软件。RegiSTORM 根据基准标记不闪烁的特性从 STORM 定位数据中识别基准标记,并将其用作通道注册的地标。我们首先在仅包含基准标记的记录上证明了准确的注册,所有测试的通道组合的目标注册误差明显降低。接下来,我们在更实际相关的细胞 tubulin 多染色设置中验证了性能。最后,我们表明 RegiSTORM 可以成功注册没有基准标记的负载货物的脂质纳米颗粒的双色 STORM 记录,证明了该软件具有更广泛的适用性。

结论

所开发的 RegiSTORM 软件被证明能够准确地注册多个 STORM 通道,并以开源(MIT 许可证)的形式在 https://github.com/oystein676/RegiSTORM.githttps://doi.org/10.5281/zenodo.5509861(存档)上提供,并作为独立的可执行文件(Windows)或通过 Python(Mac OS、Linux)运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/10242778/f687cf9c466f/12859_2023_5320_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验