Institut Pasteur, Unité Imagerie et Modélisation, Paris, France.
UMR 3691, CNRS, Paris, France.
Nat Biotechnol. 2018 Jun;36(5):460-468. doi: 10.1038/nbt.4106. Epub 2018 Apr 16.
The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
基于单分子定位的超分辨率显微镜方法(例如 PALM 和 STORM)的速度受到需要在每个视野中记录数千个帧且只有少量观察到的分子的限制。在这里,我们提出了 ANNA-PALM,这是一种计算策略,它使用人工神经网络从稀疏的、快速获取的定位图像和/或宽场图像中重建超分辨率视图。对微管、核孔和线粒体的模拟和实验成像表明,可以从比通常需要的少两个数量级的帧中重建出高质量的超分辨率图像,而不会牺牲空间分辨率。即使仅使用宽场图像也可以进行超分辨率重建,尽管添加定位数据可以提高图像质量。我们展示了 >1000 个视野的超分辨率成像,其中包含 >1000 个细胞,耗时约 3 小时,生成了一个跨越从 ∼20nm 到 ∼2mm 的空间尺度的图像。ANNA-PALM 提供的采集时间和样品辐照的急剧减少,使更快、更温和的高通量和活细胞超分辨率成像成为可能。