Suppr超能文献

基于机器学习提出模型预测急性阑尾炎粪便钙卫蛋白的价值。

Value of fecal calprotectin in prediction of acute appendicitis based on a proposed model of machine learning.

机构信息

Department of Biostatistics and Medical Informatics, Inonu University Faculty of Medicine, Malatya-Türkiye.

Department of Surgery, Inonu University Faculty of Medicine, Malatya-Türkiye.

出版信息

Ulus Travma Acil Cerrahi Derg. 2023 Jun;29(6):655-662. doi: 10.14744/tjtes.2023.10001.

Abstract

BACKGROUND

The aim of this study is to apply random forest (RF), one of the machine learning (ML) algorithms, to a dataset consisting of patients with a presumed diagnosis of acute appendicitis (AAp) and to reveal the most important factors associated with the diagnosis of AAp based on the variable importance.

METHODS

An open-access dataset comparing two patient groups with (n=40) and without (n=44) AAp to predict biomarkers for AAp was used for this case-control study. RF was used for modeling the data set. The data were divided into two training and test dataset (80: 20). Accuracy, balanced accuracy (BC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) performance metrics were appraised for model performance.

RESULTS

Accuracy, BC, sensitivity, specificity, PPV, NPV, and F1 scores pertaining to the RF model were 93.8%, 93.8%, 87.5%, 100%, 100%, 88.9%, and 93.3%, respectively. Following the variable importance values regarding the model, the variables most associated with the diagnosis and prediction of AAp were fecal calprotectin (100 %), radiological imaging (89.9%), white blood test (51.8%), C-reactive protein (47.1%), from symptoms onset to the hospital visit (19.3%), patients age (18.4%), alanine aminotransferase levels >40 (<1%), fever (<1%), and nausea/vomiting (<1%), respectively.

CONCLUSION

A prediction model was developed for AAp with the ML method in this study. Thanks to this model, biomarkers that predict AAp with high accuracy were determined. Thus, the decision-making process of clinicians for diagnosing AAp will be facilitated, and the risks of perforation and unnecessary operations will be minimized thanks to the timely diagnosis with high accuracy.

摘要

背景

本研究旨在应用机器学习(ML)算法之一的随机森林(RF),对一组疑似急性阑尾炎(AAp)患者的数据集进行分析,并根据变量重要性揭示与 AAp 诊断相关的最重要因素。

方法

本病例对照研究使用了一个比较两组患者(有 AAp 的患者 n=40,无 AAp 的患者 n=44)以预测 AAp 生物标志物的开放获取数据集。使用 RF 对数据集进行建模。将数据分为训练集和测试集(80:20)。评估模型性能的指标包括准确性、平衡准确性(BC)、敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和 F1 评分。

结果

RF 模型的准确性、BC、敏感性、特异性、PPV、NPV 和 F1 评分分别为 93.8%、93.8%、87.5%、100%、100%、88.9%和 93.3%。根据模型的变量重要性值,与 AAp 诊断和预测最相关的变量依次为粪便钙卫蛋白(100%)、影像学检查(89.9%)、白细胞检测(51.8%)、C 反应蛋白(47.1%)、从症状发作到就诊时间(19.3%)、患者年龄(18.4%)、丙氨酸氨基转移酶水平>40(<1%)、发热(<1%)和恶心/呕吐(<1%)。

结论

本研究采用 ML 方法为 AAp 开发了一个预测模型。通过该模型,确定了具有高准确性预测 AAp 的生物标志物。因此,通过高准确性的及时诊断,有助于简化临床医生的诊断决策过程,并降低穿孔和不必要手术的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2314/10315941/e740895c4b8f/TJTES-29-655-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验