Suppr超能文献

基于机器学习的可解释人工智能对穿孔性和非穿孔性急性阑尾炎的预测

Prediction of Perforated and Nonperforated Acute Appendicitis Using Machine Learning-Based Explainable Artificial Intelligence.

作者信息

Akbulut Sami, Yagin Fatma Hilal, Cicek Ipek Balikci, Koc Cemalettin, Colak Cemil, Yilmaz Sezai

机构信息

Department of Surgery, Liver Transplant Institute, Inonu University Faculty of Medicine, 244280 Malatya, Turkey.

Department of Biostatistics, and Medical Informatics, Inonu University Faculty of Medicine, 44280 Malatya, Turkey.

出版信息

Diagnostics (Basel). 2023 Mar 19;13(6):1173. doi: 10.3390/diagnostics13061173.

Abstract

BACKGROUND

The primary aim of this study was to create a machine learning (ML) model that can predict perforated and nonperforated acute appendicitis (AAp) with high accuracy and to demonstrate the clinical interpretability of the model with explainable artificial intelligence (XAI).

METHOD

A total of 1797 patients who underwent appendectomy with a preliminary diagnosis of AAp between May 2009 and March 2022 were included in the study. Considering the histopathological examination, the patients were divided into two groups as AAp ( = 1465) and non-AAp (NA; = 332); the non-AAp group is also referred to as negative appendectomy. Subsequently, patients confirmed to have AAp were divided into two subgroups: nonperforated ( = 1161) and perforated AAp ( = 304). The missing values in the data set were assigned using the Random Forest method. The Boruta variable selection method was used to identify the most important variables associated with AAp and perforated AAp. The class imbalance problem in the data set was resolved by the SMOTE method. The CatBoost model was used to classify AAp and non-AAp patients and perforated and nonperforated AAp patients. The performance of the model in the holdout test set was evaluated with accuracy, F1- score, sensitivity, specificity, and area under the receiver operator curve (AUC). The SHAP method, which is one of the XAI methods, was used to interpret the model results.

RESULTS

The CatBoost model could distinguish AAp patients from non-AAp individuals with an accuracy of 88.2% (85.6-90.8%), while distinguishing perforated AAp patients from nonperforated AAp individuals with an accuracy of 92% (89.6-94.5%). According to the results of the SHAP method applied to the CatBoost model, it was observed that high total bilirubin, WBC, Netrophil, WLR, NLR, CRP, and WNR values, and low PNR, PDW, and MCV values increased the prediction of AAp biochemically. On the other hand, high CRP, Age, Total Bilirubin, PLT, RDW, WBC, MCV, WLR, NLR, and Neutrophil values, and low Lymphocyte, PDW, MPV, and PNR values were observed to increase the prediction of perforated AAp.

CONCLUSION

For the first time in the literature, a new approach combining ML and XAI methods was tried to predict AAp and perforated AAp, and both clinical conditions were predicted with high accuracy. This new approach proved successful in showing how well which demographic and biochemical parameters could explain the current clinical situation in predicting AAp and perforated AAp.

摘要

背景

本研究的主要目的是创建一个机器学习(ML)模型,该模型能够高精度地预测穿孔性和非穿孔性急性阑尾炎(AAp),并通过可解释人工智能(XAI)展示该模型的临床可解释性。

方法

本研究纳入了2009年5月至2022年3月期间接受阑尾切除术且初步诊断为AAp的1797例患者。根据组织病理学检查,将患者分为AAp组(n = 1465)和非AAp组(NA;n = 332);非AAp组也称为阴性阑尾切除术。随后,确诊为AAp的患者被分为两个亚组:非穿孔性(n = 1161)和穿孔性AAp(n = 304)。数据集中的缺失值使用随机森林方法进行赋值。使用Boruta变量选择方法来识别与AAp和穿孔性AAp相关的最重要变量。通过SMOTE方法解决数据集中的类不平衡问题。使用CatBoost模型对AAp和非AAp患者以及穿孔性和非穿孔性AAp患者进行分类。在保留测试集中使用准确率、F1分数、灵敏度、特异性和受试者工作特征曲线下面积(AUC)评估模型的性能。使用XAI方法之一的SHAP方法来解释模型结果。

结果

CatBoost模型能够以88.2%(85.6 - 90.8%)的准确率区分AAp患者和非AAp个体,同时以92%(89.6 - 94.5%)的准确率区分穿孔性AAp患者和非穿孔性AAp个体。根据应用于CatBoost模型的SHAP方法的结果,观察到高总胆红素、白细胞、中性粒细胞、白细胞与淋巴细胞比值(WLR)、中性粒细胞与淋巴细胞比值(NLR)、C反应蛋白(CRP)和白细胞与中性粒细胞比值(WNR)值,以及低血小板与中性粒细胞比值(PNR)、血小板分布宽度(PDW)和平均红细胞体积(MCV)值在生化方面增加了对AAp的预测。另一方面,观察到高CRP、年龄、总胆红素、血小板(PLT)、红细胞分布宽度(RDW)、白细胞、MCV、WLR、NLR和中性粒细胞值,以及低淋巴细胞、PDW、平均血小板体积(MPV)和PNR值增加了对穿孔性AAp的预测。

结论

在文献中首次尝试将ML和XAI方法相结合的新方法来预测AAp和穿孔性AAp,并且两种临床情况均被高精度地预测。这种新方法成功地展示了哪些人口统计学和生化参数在预测AAp和穿孔性AAp时能够很好地解释当前的临床情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6719/10047288/bcc1dbb3c7e2/diagnostics-13-01173-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验