Suppr超能文献

病变扫描网络:用于急性阑尾炎诊断的双路径卷积神经网络

LesionScanNet: dual-path convolutional neural network for acute appendicitis diagnosis.

作者信息

Hariri Muhab, Aydın Ahmet, Sıbıç Osman, Somuncu Erkan, Yılmaz Serhan, Sönmez Süleyman, Avşar Ercan

机构信息

Electrical and Electronics Engineering Department, Çukurova University, 01330 Adana, Turkey.

Biomedical Engineering Department, Çukurova University, 01330 Adana, Turkey.

出版信息

Health Inf Sci Syst. 2024 Dec 7;13(1):3. doi: 10.1007/s13755-024-00321-7. eCollection 2025 Dec.

Abstract

Acute appendicitis is an abrupt inflammation of the appendix, which causes symptoms such as abdominal pain, vomiting, and fever. Computed tomography (CT) is a useful tool in accurate diagnosis of acute appendicitis; however, it causes challenges due to factors such as the anatomical structure of the colon and localization of the appendix in CT images. In this paper, a novel Convolutional Neural Network model, namely, LesionScanNet for the computer-aided detection of acute appendicitis has been proposed. For this purpose, a dataset of 2400 CT scan images was collected by the Department of General Surgery at Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey. LesionScanNet is a lightweight model with 765 K parameters and includes multiple DualKernel blocks, where each block contains a convolution, expansion, separable convolution layers, and skip connections. The DualKernel blocks work with two paths of input image processing, one of which uses 3 × 3 filters, and the other path encompasses 1 × 1 filters. It has been demonstrated that the LesionScanNet model has an accuracy score of 99% on the test set, a value that is greater than the performance of the benchmark deep learning models. In addition, the generalization ability of the LesionScanNet model has been demonstrated on a chest X-ray image dataset for pneumonia and COVID-19 detection. In conclusion, LesionScanNet is a lightweight and robust network achieving superior performance with smaller number of parameters and its usage can be extended to other medical application domains.

摘要

急性阑尾炎是阑尾的一种突然炎症,会引起腹痛、呕吐和发烧等症状。计算机断层扫描(CT)是准确诊断急性阑尾炎的一种有用工具;然而,由于结肠的解剖结构以及CT图像中阑尾的定位等因素,它也带来了挑战。本文提出了一种新颖的卷积神经网络模型,即用于急性阑尾炎计算机辅助检测的LesionScanNet。为此,土耳其伊斯坦布尔卡努尼苏丹·苏莱曼研究与培训医院普通外科收集了一个包含2400张CT扫描图像的数据集。LesionScanNet是一个具有765K参数的轻量级模型,包括多个双内核块,每个块包含一个卷积、扩展、深度可分离卷积层和跳跃连接。双内核块通过两条输入图像处理路径工作,其中一条使用3×3滤波器,另一条路径包含1×1滤波器。结果表明,LesionScanNet模型在测试集上的准确率为99%,该值高于基准深度学习模型的性能。此外,LesionScanNet模型的泛化能力已在用于肺炎和新冠肺炎检测的胸部X光图像数据集上得到证明。总之,LesionScanNet是一个轻量级且强大的网络,以较少的参数实现了卓越的性能,其应用可扩展到其他医学应用领域。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验