Suppr超能文献

机器学习被用于预测胰腺癌远处转移的危险因素及预后分析。

Machine learning was used to predict risk factors for distant metastasis of pancreatic cancer and prognosis analysis.

作者信息

Yao Qianyun, Jia Weili, Chen Siyan, Wang Qingqing, Liu Zhekui, Liu Danping, Ji Xincai

机构信息

Xi'an Medical University, Xi'an, China.

Shaanxi Provincial People's Hospital, Xi'an, China.

出版信息

J Cancer Res Clin Oncol. 2023 Sep;149(12):10279-10291. doi: 10.1007/s00432-023-04903-y. Epub 2023 Jun 6.

Abstract

BACKGROUND

The mechanisms of distant metastasis in pancreatic cancer (PC) have not been elucidated, and this study aimed to explore the risk factors affecting the metastasis and prognosis of metastatic patients and to develop a predictive model.

METHOD

Clinical data from patients meeting criteria from 1990 to 2019 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database, and two machine learning methods, random forest and support vector machine, combined with logistic regression, were used to explore risk factors influencing distant metastasis and to create nomograms. The performance of the model was validated using calibration curves and ROC curves based on the Shaanxi Provincial People's Hospital cohort. LASSO regression and Cox regression models were used to explore the independent risk factors affecting the prognosis of patients with distant PC metastases.

RESULTS

We found that independent risk factors affecting PC distant metastasis were: age, radiotherapy, chemotherapy, T and N; the independent risk factors for patient prognosis were: age, grade, bone metastasis, brain metastasis, lung metastasis, radiotherapy and chemotherapy.

CONCLUSION

Together, our study provides a method for risk factors and prognostic assessment for patients with distant PC metastases. The nomogram we developed can be used as a convenient individualized tool to facilitate aid in clinical decision making.

摘要

背景

胰腺癌(PC)远处转移的机制尚未阐明,本研究旨在探讨影响转移性患者转移和预后的危险因素,并建立预测模型。

方法

从监测、流行病学和最终结果(SEER)数据库中获取1990年至2019年符合标准患者的临床数据,并使用随机森林和支持向量机这两种机器学习方法结合逻辑回归,来探索影响远处转移的危险因素并创建列线图。基于陕西省人民医院队列,使用校准曲线和ROC曲线对模型性能进行验证。采用LASSO回归和Cox回归模型探索影响PC远处转移患者预后的独立危险因素。

结果

我们发现影响PC远处转移的独立危险因素为:年龄、放疗、化疗、T和N;影响患者预后的独立危险因素为:年龄、分级、骨转移、脑转移、肺转移、放疗和化疗。

结论

总之,我们的研究为PC远处转移患者的危险因素和预后评估提供了一种方法。我们开发的列线图可用作方便的个体化工具,以辅助临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验