Suppr超能文献

开发医院获得性压力性损伤预测模型。

Development of a Predictive Model for Hospital-Acquired Pressure Injuries.

机构信息

Author Affiliations: Healthcare Direction (CHUV) (Ms Pouzols and Pr Mabire); Biomedical Data Science Center (Mr Despraz and Dr Raisaro), and Institute of Higher Education and Research in Healthcare (Pr Mabire), Lausanne University Hospital; and University of Lausanne (Pr Mabire), Lausanne, Switzerland.

出版信息

Comput Inform Nurs. 2023 Nov 1;41(11):884-891. doi: 10.1097/CIN.0000000000001029.

Abstract

Hospital-acquired pressure injuries are a challenge for healthcare systems, and the nurse's role is essential in their prevention. The first step is risk assessment. The development of advanced data-driven methods based on machine learning techniques can improve risk assessment through the use of routinely collected data. We studied 24 227 records from 15 937 distinct patients admitted to medical and surgical units between April 1, 2019, and March 31, 2020. Two predictive models were developed: random forest and long short-term memory neural network. Model performance was then evaluated and compared with the Braden score. The areas under the receiver operating characteristic curve, the specificity, and the accuracy of the long short-term memory neural network model (0.87, 0.82, and 0.82, respectively) were higher than those of the random forest model (0.80, 0.72, and 0.72, respectively) and the Braden score (0.72, 0.61, and 0.61, respectively). The sensitivity of the Braden score (0.88) was higher than that of long short-term memory neural network model (0.74) and the random forest model (0.73). The long short-term memory neural network model has the potential to support nurses in clinical decision-making. Implementation of this model in the electronic health record could improve assessment and allow nurses to focus on higher-priority interventions.

摘要

医院获得性压力性损伤是医疗系统面临的挑战,护士在预防此类损伤方面发挥着至关重要的作用。第一步是进行风险评估。基于机器学习技术的先进数据驱动方法的发展可以通过使用常规收集的数据来提高风险评估的准确性。我们研究了 2019 年 4 月 1 日至 2020 年 3 月 31 日期间,15937 名不同患者在医疗和外科病房的 24227 条记录。我们开发了两个预测模型:随机森林和长短期记忆神经网络。然后评估并比较了模型性能与布雷登评分。长短期记忆神经网络模型的受试者工作特征曲线下面积、特异性和准确性(分别为 0.87、0.82 和 0.82)均高于随机森林模型(分别为 0.80、0.72 和 0.72)和布雷登评分(分别为 0.72、0.61 和 0.61)。布雷登评分的敏感度(0.88)高于长短期记忆神经网络模型(0.74)和随机森林模型(0.73)。长短期记忆神经网络模型具有辅助护士进行临床决策的潜力。在电子健康记录中实施该模型可以改善评估,并使护士能够专注于优先级更高的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验