Suppr超能文献

基于电子病历驱动的医院获得性压疮机器学习预测模型:开发与外部验证

Electronic-Medical-Record-Driven Machine Learning Predictive Model for Hospital-Acquired Pressure Injuries: Development and External Validation.

作者信息

Nguyen Kim-Anh-Nhi, Patel Dhavalkumar, Edalati Masoud, Sevillano Maria, Timsina Prem, Freeman Robert, Levin Matthew A, Reich David L, Kia Arash

机构信息

Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Wound and Ostomy Care Service, The Mount Sinai Hospital, New York, NY 10029, USA.

出版信息

J Clin Med. 2025 Feb 11;14(4):1175. doi: 10.3390/jcm14041175.

Abstract

Hospital-acquired pressure injuries (HAPIs) affect approximately 2.5 million patients annually in the United States, leading to increased morbidity and healthcare costs. Current rule-based screening tools, such as the Braden Scale, lack sensitivity, highlighting the need for improved risk prediction methods. We developed and externally validated a machine learning model to predict HAPI risk using longitudinal electronic medical record (EMR) data. This study included adult inpatients (2018-2023) across five hospitals within a large health system. An automated pipeline was built for EMR data curation, labeling, and integration. The model employed XGBoost with recursive feature elimination to identify 35 optimal clinical variables and utilized time-series analysis for dynamic risk prediction. Internal validation and multi-center external validation on 5510 hospitalizations demonstrated AUROC values of 0.83-0.85. The model outperformed the Braden Scale in sensitivity and F1-score and showed superior performance compared to previous predictive models. This is the first externally validated, cross-institutional HAPI prediction model using longitudinal EMR data and automated pipelines. The model demonstrates strong generalizability, scalability, and real-time applicability, offering a novel bioengineering approach to improve HAPI prevention, patient care, and clinical operations.

摘要

医院获得性压疮(HAPI)在美国每年影响约250万患者,导致发病率增加和医疗成本上升。当前基于规则的筛查工具,如Braden量表,缺乏敏感性,凸显了改进风险预测方法的必要性。我们开发并在外部验证了一种机器学习模型,以使用纵向电子病历(EMR)数据预测HAPI风险。本研究纳入了一个大型医疗系统中五家医院的成年住院患者(2018 - 2023年)。构建了一个自动化管道用于EMR数据管理、标记和整合。该模型采用带有递归特征消除的XGBoost来识别35个最佳临床变量,并利用时间序列分析进行动态风险预测。对5510例住院病例的内部验证和多中心外部验证显示,曲线下面积(AUROC)值为0.83 - 0.85。该模型在敏感性和F1分数方面优于Braden量表,并且与先前的预测模型相比表现更优。这是首个使用纵向EMR数据和自动化管道进行外部验证的跨机构HAPI预测模型。该模型展示了强大的通用性、可扩展性和实时适用性,提供了一种新颖的生物工程方法来改善HAPI预防、患者护理和临床操作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bac/11857033/e5a436658861/jcm-14-01175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验