Suppr超能文献

基于实时诊断的Braden 量表和随机森林集成系统预测医院获得性压疮(褥疮)的发生时间。

An Integrated System of Braden Scale and Random Forest Using Real-Time Diagnoses to Predict When Hospital-Acquired Pressure Injuries (Bedsores) Occur.

机构信息

Department of Systems Science and Industrial Engineering, Binghamton University, Binghamton, NY 13902, USA.

Wound Ostomy Continence Nursing, ChristianaCare Health System, Newark, DE 19718, USA.

出版信息

Int J Environ Res Public Health. 2023 Mar 10;20(6):4911. doi: 10.3390/ijerph20064911.

Abstract

BACKGROUND AND OBJECTIVES

Bedsores/Pressure Injuries (PIs) are the second most common diagnosis in healthcare system billing records in the United States and account for 60,000 deaths annually. Hospital-Acquired Pressure Injuries (HAPIs) are one classification of PIs and indicate injuries that occurred while the patient was cared for within the hospital. Until now, all studies have predicted who will develop HAPI using classic machine algorithms, which provides incomplete information for the clinical team. Knowing who will develop HAPI does not help differentiate at which point those predicted patients will develop HAPIs; no studies have investigated when HAPI develops for predicted at-risk patients. This research aims to develop a hybrid system of Random Forest (RF) and Braden Scale to predict HAPI time by considering the changes in patients' diagnoses from admission until HAPI occurrence.

METHODS

Real-time diagnoses and risk factors were collected daily for 485 patients from admission until HAPI occurrence, which resulted in 4619 records. Then for each record, HAPI time was calculated from the day of diagnosis until HAPI occurrence. Recursive Feature Elimination (RFE) selected the best factors among the 60 factors. The dataset was separated into 80% training (10-fold cross-validation) and 20% testing. Grid Search (GS) with RF (GS-RF) was adopted to predict HAPI time using collected risk factors, including Braden Scale. Then, the proposed model was compared with the seven most common algorithms used to predict HAPI; each was replicated for 50 different experiments.

RESULTS

GS-RF achieved the best Area Under the Curve (AUC) (91.20 ± 0.26) and Geometric Mean (G-mean) (91.17 ± 0.26) compared to the seven algorithms. RFE selected 43 factors. The most dominant interactable risk factors in predicting HAPI time were visiting ICU during hospitalization, Braden subscales, BMI, Stimuli Anesthesia, patient refusal to change position, and another lab diagnosis.

CONCLUSION

Identifying when the patient is likely to develop HAPI can target early intervention when it is needed most and reduces unnecessary burden on patients and care teams when patients are at lower risk, which further individualizes the plan of care.

摘要

背景与目的

压疮/压力性损伤(PI)是美国医疗保健系统计费记录中第二常见的诊断,每年导致 6 万人死亡。医院获得性压力性损伤(HAPI)是 PI 的一种分类,指的是患者在医院接受治疗期间发生的损伤。到目前为止,所有研究都使用经典的机器算法预测谁将患上 HAPI,这为临床团队提供了不完整的信息。了解谁将患上 HAPI 并不能帮助区分那些预测的患者将在何时患上 HAPI;没有研究调查过预测的高危患者何时会患上 HAPI。本研究旨在开发一种随机森林(RF)和布雷登量表的混合系统,通过考虑患者入院至 HAPI 发生期间诊断的变化来预测 HAPI 时间。

方法

从入院到 HAPI 发生,每天实时收集 485 名患者的诊断和风险因素,共得到 4619 条记录。然后,对于每条记录,从诊断之日起计算 HAPI 时间到 HAPI 发生之日。递归特征消除(RFE)从 60 个因素中选择最佳因素。数据集分为 80%的训练集(10 倍交叉验证)和 20%的测试集。采用网格搜索(GS)与 RF(GS-RF)结合收集的风险因素,包括布雷登量表,预测 HAPI 时间。然后,将提出的模型与七种最常用于预测 HAPI 的算法进行比较;每种算法都复制了 50 次不同的实验。

结果

GS-RF 在预测 HAPI 时间方面获得了最佳的曲线下面积(AUC)(91.20±0.26)和几何平均(G-mean)(91.17±0.26),优于七种算法。RFE 选择了 43 个因素。预测 HAPI 时间最主要的交互风险因素是住院期间入住 ICU、布雷登量表子量表、BMI、刺激麻醉、患者拒绝改变体位以及另一个实验室诊断。

结论

确定患者何时可能患上 HAPI,可以在最需要的时候进行早期干预,减少患者和护理团队在患者风险较低时的不必要负担,从而进一步实现护理计划的个体化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e70/10049700/c09862df1df3/ijerph-20-04911-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验