Zürn Christoph, Hübner David, Ziesenitz Victoria C, Höhn René, Schuler Lena, Schlange Tim, Gorenflo Matthias, Kari Fabian A, Kroll Johannes, Loukanov Tsvetomir, Klemm Rolf, Stiller Brigitte
Department of Congenital Heart Defects and Paediatric Cardiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
Machine learning for medical applications, Averbis GmbH, Freiburg, Germany.
Interdiscip Cardiovasc Thorac Surg. 2023 Sep 2;37(3). doi: 10.1093/icvts/ivad089.
The objective of the study was to improve postoperative risk assessment in congenital heart surgery by developing a machine-learning model based on readily available peri- and postoperative parameters.
Our bicentric retrospective data analysis from January 2014 to December 2019 of established risk parameters for dismal outcome was used to train and test a model to predict postoperative survival within the first 30 days. The Freiburg training data consisted of 780 procedures; the Heidelberg test data comprised 985 procedures. STAT mortality score, age, aortic cross-clamp time and postoperative lactate values over 24 h were considered.
Our model showed an area under the curve (AUC) of 94.86%, specificity of 89.48% and sensitivity of 85.00%, resulting in 3 false negatives and 99 false positives.The STAT mortality score and the aortic cross-clamp time each showed a statistically highly significant impact on postoperative mortality. Interestingly, a child's age was barely statistically significant. Postoperative lactate values indicated an increased mortality risk if they were either constantly at a high level or low during the first 8 h postoperatively with an increase afterwards.When considering parameters available before, at the end of and 24 h after surgery, the predictive power of the complete model achieved the highest AUC. This, compared to the already high predictive power alone (AUC 88.9%) of the STAT mortality score, translates to an error reduction of 53.5%.
Our model predicts postoperative survival after congenital heart surgery with great accuracy. Compared with preoperative risk assessments, our postoperative risk assessment reduces prediction error by half. Heightened awareness of high-risk patients should improve preventive measures and thus patient safety.
本研究的目的是通过基于易于获得的围手术期和术后参数开发机器学习模型,改善先天性心脏病手术的术后风险评估。
我们对2014年1月至2019年12月期间关于不良结局既定风险参数的双中心回顾性数据分析,用于训练和测试一个预测术后30天内生存率的模型。弗莱堡的训练数据包括780例手术;海德堡的测试数据包括985例手术。考虑了STAT死亡率评分、年龄、主动脉阻断时间和术后24小时的乳酸值。
我们的模型曲线下面积(AUC)为94.86%,特异性为89.48%,敏感性为85.00%,产生3例假阴性和99例假阳性。STAT死亡率评分和主动脉阻断时间各自对术后死亡率显示出统计学上高度显著的影响。有趣的是,儿童年龄在统计学上几乎没有显著意义。术后乳酸值表明,如果在术后最初8小时内持续处于高水平或低水平,随后升高,则死亡风险增加。当考虑手术前、结束时和术后24小时可用的参数时,完整模型的预测能力达到最高AUC。与STAT死亡率评分本身已经很高的预测能力(AUC 88.9%)相比,这意味着误差减少了53.5%。
我们的模型能非常准确地预测先天性心脏病手术后的生存率。与术前风险评估相比,我们的术后风险评估将预测误差降低了一半。提高对高危患者的认识应能改善预防措施,从而提高患者安全性。