Suppr超能文献

揭示铜(997)界面邻近位置 CO 分子的离解途径。

Revealing CO dissociation pathways at vicinal copper (997) interfaces.

机构信息

Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, US.

出版信息

Nat Commun. 2023 Jun 6;14(1):3273. doi: 10.1038/s41467-023-38928-1.

Abstract

Size- and shape-tailored copper (Cu) nanocrystals can offer vicinal planes for facile carbon dioxide (CO) activation. Despite extensive reactivity benchmarks, a correlation between CO conversion and morphology structure has not yet been established at vicinal Cu interfaces. Herein, ambient pressure scanning tunneling microscopy reveals step-broken Cu nanocluster evolutions on the Cu(997) surface under 1 mbar CO(g). The CO dissociation reaction produces carbon monoxide (CO) adsorbate and atomic oxygen (O) at Cu step-edges, inducing complicated restructuring of the Cu atoms to compensate for increased surface chemical potential energy at ambient pressure. The CO molecules bound at under-coordinated Cu atoms contribute to the reversible Cu clustering with the pressure gap effect, whereas the dissociated oxygen leads to irreversible Cu faceting geometries. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy identifies the chemical binding energy changes in CO-Cu complexes, which proves the characterized real-space evidence for the step-broken Cu nanoclusters under CO(g) environments. Our in situ surface observations provide a more realistic insight into Cu nanocatalyst designs for efficient CO conversion to renewable energy sources during C chemical reactions.

摘要

尺寸和形状适配的铜 (Cu) 纳米晶体可为易于二氧化碳 (CO) 激活提供共面晶面。尽管有广泛的反应性基准,但在共面 Cu 界面处,CO 转化率和形态结构之间尚未建立相关性。在此,常压扫描隧道显微镜揭示了在 1 毫巴 CO(g) 下 Cu(997)表面上的阶梯状 Cu 纳米团簇演变。CO 解离反应在 Cu 阶跃边缘产生一氧化碳 (CO) 吸附物和原子氧 (O),导致 Cu 原子的复杂重构,以补偿常压下增加的表面化学势能。结合在配位不足的 Cu 原子上的 CO 分子有助于具有压力间隙效应的可逆 Cu 聚集,而解离的氧则导致不可逆的 Cu 晶面化几何形状。基于同步加速器的常压 X 射线光电子能谱确定了 CO-Cu 配合物中的化学结合能变化,这证明了 CO(g) 环境下阶梯状 Cu 纳米团簇的特征实空间证据。我们的原位表面观察为设计用于在 C 化学反应中有效将 CO 转化为可再生能源的 Cu 纳米催化剂提供了更现实的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b779/10244362/f07151fd322b/41467_2023_38928_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验