Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PH, U.K.
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton 11973, New York, United States.
J Am Chem Soc. 2023 Mar 29;145(12):6730-6740. doi: 10.1021/jacs.2c12728. Epub 2023 Mar 14.
The reactions of H, CO, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H is introduced prior to the addition of CO. Only on increasing the CO partial pressure is CuO formation observed that coexists with metallic Cu. When only CO is present, the surface oxidizes to CuO and CuO, and the subsequent addition of H partially reduces the surface to CuO without recovering metallic Cu, consistent with a high kinetic barrier to H dissociation on CuO. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO activation and subsequent conversion to CHOH. These findings are corroborated by mass spectrometry measurements, which show increased HO formation when H is dosed before rather than after CO. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.
采用大气压下的掠入射 X 射线光电子能谱(AP-XPS)和大气压近边 X 射线吸收精细结构光谱(AtmP-NEXAFS)相结合的方法,研究了在 200°C 下,对工业甲醇合成相关的 H、CO 和 CO 混合气体在 Cu 表面的反应。该方法的气压范围为 0.1 毫巴至 1 巴。我们发现,气体注入的顺序可能会对催化剂的化学状态产生重大影响,当 H 在添加 CO 之前引入时,Cu 催化剂保持金属状态。只有当 CO 分压增加时,才会观察到 CuO 的形成,其与金属 Cu 共存。当仅存在 CO 时,表面会氧化为 CuO 和 CuO,随后添加 H 会部分还原表面至 CuO,但不会恢复金属 Cu,这与 CuO 上 H 离解的高动力学障碍一致。发现向混合气体中添加 CO 对于去除吸附氧起着关键作用,否则吸附氧会使 Cu 表面钝化,使 CO 能够在金属 Cu 表面上进行活化,随后转化为 CHOH。质谱测量结果证实了这一点,当 H 在 CO 之前而不是之后注入时,HO 的形成增加。因此,在甲醇合成反应过程中保持金属 Cu 位的重要性被突出强调,即使催化剂载体中不包含 ZnO,在 CO 存在于气体进料中的情况下也有助于实现这一点。