Suppr超能文献

Rh表面如何在环境压力下分解CO分子。

How Rh surface breaks CO molecules under ambient pressure.

作者信息

Kim Jeongjin, Ha Hyunwoo, Doh Won Hui, Ueda Kohei, Mase Kazuhiko, Kondoh Hiroshi, Mun Bongjin Simon, Kim Hyun You, Park Jeong Young

机构信息

Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.

Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea.

出版信息

Nat Commun. 2020 Nov 6;11(1):5649. doi: 10.1038/s41467-020-19398-1.

Abstract

Utilization of carbon dioxide (CO) molecules leads to increased interest in the sustainable synthesis of methane (CH) or methanol (CHOH). The representative reaction intermediate consisting of a carbonyl or formate group determines yields of the fuel source during catalytic reactions. However, their selective initial surface reaction processes have been assumed without a fundamental understanding at the molecular level. Here, we report direct observations of spontaneous CO dissociation over the model rhodium (Rh) catalyst at 0.1 mbar CO. The linear geometry of CO gas molecules turns into a chemically active bent-structure at the interface, which allows non-uniform charge transfers between chemisorbed CO and surface Rh atoms. By combining scanning tunneling microscopy, X-ray photoelectron spectroscopy at near-ambient pressure, and computational calculations, we reveal strong evidence for chemical bond cleavage of O‒CO* with ordered intermediates structure formation of (2 × 2)-CO on an atomically flat Rh(111) surface at room temperature.

摘要

二氧化碳(CO)分子的利用引发了人们对可持续合成甲烷(CH)或甲醇(CH₃OH)的更多关注。由羰基或甲酸酯基团组成的代表性反应中间体决定了催化反应过程中燃料源的产量。然而,它们选择性的初始表面反应过程在分子层面上尚未得到根本性理解的情况下就被假定了。在此,我们报告了在0.1毫巴CO条件下,在模型铑(Rh)催化剂上对CO自发解离的直接观测。CO气体分子的线性几何结构在界面处转变为具有化学活性的弯曲结构,这使得化学吸附的CO与表面Rh原子之间能够进行非均匀电荷转移。通过结合扫描隧道显微镜、近常压X射线光电子能谱以及计算计算,我们揭示了在室温下,在原子级平整的Rh(111)表面上,O‒CO*化学键断裂并形成有序中间体结构(2×2)-CO的有力证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a20/7648795/5897dbff0d03/41467_2020_19398_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验