Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA, 98105, USA.
Department of Urology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Sci Rep. 2023 Jun 6;13(1):9160. doi: 10.1038/s41598-023-35337-8.
Acoustic radiation forces can remotely manipulate particles. Forces from a standing wave field align microscale particles along the nodal or anti-nodal locations of the field to form three-dimensional (3D) patterns. These patterns can be used to form 3D microstructures for tissue engineering applications. However, standing wave generation requires more than one transducer or a reflector, which is challenging to implement in vivo. Here, a method is developed and validated to manipulate microspheres using a travelling wave from a single transducer. Diffraction theory and an iterative angular spectrum approach are employed to design phase holograms to shape the acoustic field. The field replicates a standing wave and aligns polyethylene microspheres in water, which are analogous to cells in vivo, at pressure nodes. Using Gor'kov potential to calculate the radiation forces on the microspheres, axial forces are minimized, and transverse forces are maximized to create stable particle patterns. Pressure fields from the phase holograms and resulting particle aggregation patterns match predictions with a feature similarity index > 0.92, where 1 is a perfect match. The resulting radiation forces are comparable to those produced from a standing wave, which suggests opportunities for in vivo implementation of cell patterning toward tissue engineering applications.
声辐射力可远程操控粒子。驻波场的力可使微尺度粒子沿场的节点或反节点位置排列,形成三维(3D)图案。这些图案可用于形成组织工程应用的 3D 微结构。然而,驻波的产生需要不止一个换能器或反射器,这在体内实施具有挑战性。在这里,开发并验证了一种使用单个换能器的行波来操控微球的方法。衍射理论和迭代角谱方法用于设计相位全息图以形成声场。该场复制驻波,并在压力节点处使类似于体内细胞的水中聚乙烯微球排列整齐。使用 Gor'kov 势来计算微球上的辐射力,最小化轴向力,并最大化横向力以创建稳定的粒子图案。相位全息图的压力场和由此产生的粒子聚集图案与预测相匹配,特征相似性指数 > 0.92,其中 1 表示完美匹配。产生的辐射力可与驻波产生的辐射力相媲美,这为组织工程应用的细胞图案化的体内实施提供了机会。