Suppr超能文献

整洁蛋白质组学:用于定量蛋白质组学后分析和可视化的开源 R 包和数据对象。

Tidyproteomics: an open-source R package and data object for quantitative proteomics post analysis and visualization.

机构信息

Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA.

Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.

出版信息

BMC Bioinformatics. 2023 Jun 6;24(1):239. doi: 10.1186/s12859-023-05360-7.

Abstract

BACKGROUND

The analysis of mass spectrometry-based quantitative proteomics data can be challenging given the variety of established analysis platforms, the differences in reporting formats, and a general lack of approachable standardized post-processing analyses such as sample group statistics, quantitative variation and even data filtering. We developed tidyproteomics to facilitate basic analysis, improve data interoperability and potentially ease the integration of new processing algorithms, mainly through the use of a simplified data-object.

RESULTS

The R package tidyproteomics was developed as both a framework for standardizing quantitative proteomics data and a platform for analysis workflows, containing discrete functions that can be connected end-to-end, thus making it easier to define complex analyses by breaking them into small stepwise units. Additionally, as with any analysis workflow, choices made during analysis can have large impacts on the results and as such, tidyproteomics allows researchers to string each function together in any order, select from a variety of options and in some cases develop and incorporate custom algorithms.

CONCLUSIONS

Tidyproteomics aims to simplify data exploration from multiple platforms, provide control over individual functions and analysis order, and serve as a tool to assemble complex repeatable processing workflows in a logical flow. Datasets in tidyproteomics are easy to work with, have a structure that allows for biological annotations to be added, and come with a framework for developing additional analysis tools. The consistent data structure and accessible analysis and plotting tools also offers a way for researchers to save time on mundane data manipulation tasks.

摘要

背景

鉴于已建立的分析平台种类繁多、报告格式存在差异,以及缺乏可访问的标准化后处理分析(如样本组统计、定量变化甚至数据过滤),基于质谱的定量蛋白质组学数据分析具有一定挑战性。我们开发了 tidyproteomics,以促进基本分析、提高数据互操作性,并可能简化新处理算法的集成,主要通过使用简化的数据对象。

结果

R 包 tidyproteomics 不仅是标准化定量蛋白质组学数据的框架,也是分析工作流程的平台,它包含离散的功能,可以端到端连接,从而更容易通过将复杂分析分解为小的逐步单元来定义复杂分析。此外,与任何分析工作流程一样,分析过程中的选择会对结果产生重大影响,因此,tidyproteomics 允许研究人员以任何顺序将每个功能串联在一起,从各种选项中进行选择,并在某些情况下开发和纳入自定义算法。

结论

tidyproteomics 的目标是简化来自多个平台的数据探索,提供对单个功能和分析顺序的控制,并作为一种工具,以逻辑流程组装复杂的可重复处理工作流程。tidyproteomics 中的数据集易于处理,具有允许添加生物学注释的结构,并为开发其他分析工具提供了框架。一致的数据结构和可访问的分析和绘图工具还为研究人员节省了处理繁琐数据任务的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/982f/10246047/764f9cb0c27a/12859_2023_5360_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验