Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK.
BMC Res Notes. 2023 Jun 6;16(1):98. doi: 10.1186/s13104-023-06372-5.
Survival models are used extensively in biomedical sciences, where they allow the investigation of the effect of exposures on health outcomes. It is desirable to use diverse data sets in survival analyses, because this offers increased statistical power and generalisability of results. However, there are often challenges with bringing data together in one location or following an analysis plan and sharing results. DataSHIELD is an analysis platform that helps users to overcome these ethical, governance and process difficulties. It allows users to analyse data remotely, using functions that are built to restrict access to the detailed data items (federated analysis). Previous works have provided survival modelling functionality in DataSHIELD (dsSurvival package), but there is a requirement to provide functions that offer privacy enhancing survival curves that retain useful information.
We introduce an enhanced version of the dsSurvival package which offers privacy enhancing survival curves for DataSHIELD. Different methods for enhancing privacy were evaluated for their effectiveness in enhancing privacy while maintaining utility. We demonstrated how our selected method could enhance privacy in different scenarios using real survival data. The details of how DataSHIELD can be used to generate survival curves can be found in the associated tutorial.
生存模型在生物医学科学中得到了广泛应用,它们可以研究暴露对健康结果的影响。在生存分析中使用多样化的数据集是理想的,因为这可以提高统计效力和结果的通用性。然而,将数据集中在一个位置或遵循分析计划并共享结果往往存在挑战。DataSHIELD 是一个分析平台,帮助用户克服这些道德、治理和流程方面的困难。它允许用户使用内置的功能远程分析数据,这些功能限制了对详细数据项的访问(联邦分析)。之前的工作已经在 DataSHIELD 中提供了生存模型功能(dsSurvival 包),但需要提供提供隐私增强生存曲线的功能,这些曲线保留有用的信息。
我们引入了一个增强版的 dsSurvival 包,它为 DataSHIELD 提供了隐私增强的生存曲线。评估了不同的隐私增强方法在保持效用的同时增强隐私的有效性。我们展示了我们选择的方法如何在不同场景下使用真实的生存数据来增强隐私。如何使用 DataSHIELD 生成生存曲线的详细信息可以在相关教程中找到。