Suppr超能文献

dsSurvival:在 DataSHIELD 中用于联合个体患者荟萃分析的隐私保护生存模型。

dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD.

机构信息

Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.

Faculty of Medicine and Medical Center, Institute of Medical Biometry and Statistics, University of Freiburg, Breisgau, Germany.

出版信息

BMC Res Notes. 2022 Jun 3;15(1):197. doi: 10.1186/s13104-022-06085-1.

Abstract

OBJECTIVE

Achieving sufficient statistical power in a survival analysis usually requires large amounts of data from different sites. Sensitivity of individual-level data, ethical and practical considerations regarding data sharing across institutions could be a potential challenge for achieving this added power. Hence we implemented a federated meta-analysis approach of survival models in DataSHIELD, where only anonymous aggregated data are shared across institutions, while simultaneously allowing for exploratory, interactive modelling. In this case, meta-analysis techniques to combine analysis results from each site are a solution, but an analytic workflow involving local analysis undertaken at individual studies hinders exploration. Thus, the aim is to provide a framework for performing meta-analysis of Cox regression models across institutions without manual analysis steps for the data providers.

RESULTS

We introduce a package (dsSurvival) which allows privacy preserving meta-analysis of survival models, including the calculation of hazard ratios. Our tool can be of great use in biomedical research where there is a need for building survival models and there are privacy concerns about sharing data.

摘要

目的

在生存分析中达到足够的统计功效通常需要从不同地点获得大量的数据。个体水平数据的敏感性、机构间数据共享的伦理和实际考虑可能是实现这一附加功效的潜在挑战。因此,我们在 DataSHIELD 中实施了生存模型的联邦荟萃分析方法,其中仅在机构间共享匿名汇总数据,同时允许进行探索性、交互式建模。在这种情况下,合并每个站点的分析结果的荟萃分析技术是一种解决方案,但涉及在各个研究中进行本地分析的分析工作流程会阻碍探索。因此,我们的目标是提供一个在不进行手动分析步骤的情况下在机构间执行 Cox 回归模型荟萃分析的框架,为数据提供者提供帮助。

结果

我们引入了一个包(dsSurvival),它允许对生存模型进行隐私保护荟萃分析,包括计算风险比。我们的工具在需要构建生存模型且对数据共享存在隐私顾虑的生物医学研究中非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4e/9166323/cc1f0f07808d/13104_2022_6085_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验