Suppr超能文献

相似文献

2
DataSHIELD: taking the analysis to the data, not the data to the analysis.
Int J Epidemiol. 2014 Dec;43(6):1929-44. doi: 10.1093/ije/dyu188. Epub 2014 Sep 26.
5
Federated difference-in-differences with multiple time periods in DataSHIELD.
iScience. 2024 Oct 9;27(11):111025. doi: 10.1016/j.isci.2024.111025. eCollection 2024 Nov 15.
6
Deep generative models in DataSHIELD.
BMC Med Res Methodol. 2021 Apr 3;21(1):64. doi: 10.1186/s12874-021-01237-6.
7
Privacy-Preserving Workflow for the Cross-Border Federated Analysis of Clinical Data.
Stud Health Technol Inform. 2024 Aug 22;316:1637-1641. doi: 10.3233/SHTI240737.
8
dsSynthetic: synthetic data generation for the DataSHIELD federated analysis system.
BMC Res Notes. 2022 Jun 27;15(1):230. doi: 10.1186/s13104-022-06111-2.
10
Privacy-preserving federated machine learning on FAIR health data: A real-world application.
Comput Struct Biotechnol J. 2024 Feb 17;24:136-145. doi: 10.1016/j.csbj.2024.02.014. eCollection 2024 Dec.

本文引用的文献

3
Bridging the Data-Sharing Divide - Seeing the Devil in the Details, Not the Other Camp.
N Engl J Med. 2017 Jun 8;376(23):2201-2203. doi: 10.1056/NEJMp1704482. Epub 2017 Apr 26.
4
DataSHIELD: taking the analysis to the data, not the data to the analysis.
Int J Epidemiol. 2014 Dec;43(6):1929-44. doi: 10.1093/ije/dyu188. Epub 2014 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验