Chong Carice, Tan Zher Nin, Boong Siew Kheng, Ang Zhi Zhong, Leong Shi Xuan, Lee Yih Hong, Li Haitao, Lee Hiang Kwee
Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
Small. 2023 Sep;19(39):e2300703. doi: 10.1002/smll.202300703. Epub 2023 Jun 7.
Photothermal steam generation promises decentralized water purification, but current methods suffer from slow water evaporation even at high photothermal efficiency of ≈98%. This drawback arises from the high latent heat of vaporization that is required to overcome the strong and extensive hydrogen bonding network in water for steam generation. Here, light-to-vapor conversion is boosted by incorporating chaotropic/kosmotropic chemistries onto plasmonic nanoheater to manipulate water intermolecular network at the point-of-heating. The chaotropic-plasmonic nanoheater affords rapid light-to-vapor conversion (2.79 kg m h kW ) at ≈83% efficiency, with the steam generation rate up to 6-fold better than kosmotropic platforms or emerging photothermal designs. Notably, the chaotropic-plasmonic nanoheater also lowers the enthalpy of water vaporization by 1.6-fold when compared to bulk water, signifying that a correspondingly higher amount of steam can be generated with the same energy input. Simulation studies unveil chaotropic surface chemistry is crucial to disrupt water hydrogen bonding network and suppress the energy barrier for water evaporation. Using the chaotropic-plasmonic nanoheater, organic-polluted water is purified at ≈100% efficiency, a feat otherwise challenging in conventional treatments. This study offers a unique chemistry approach to boost light-driven steam generation beyond a material photothermal property.
光热蒸汽产生有望实现分散式水净化,但目前的方法即使在约98%的高光热效率下也存在水蒸发缓慢的问题。这一缺点源于汽化潜热高,为了产生蒸汽,需要克服水中强大而广泛的氢键网络。在这里,通过将离液/促溶化学物质引入等离子体纳米加热器来操纵加热点处的水分子间网络,从而提高光到蒸汽的转换效率。离液等离子体纳米加热器在约83%的效率下实现了快速的光到蒸汽转换(2.79 kg m h kW),蒸汽产生速率比促溶平台或新兴的光热设计高出6倍。值得注意的是,与 bulk water相比,离液等离子体纳米加热器还将水汽化焓降低了1.6倍,这意味着在相同的能量输入下可以产生相应更多的蒸汽。模拟研究表明,离液表面化学对于破坏水的氢键网络和抑制水蒸发的能量屏障至关重要。使用离液等离子体纳米加热器,有机污染水的净化效率约为100%,这在传统处理中是一项具有挑战性的壮举。这项研究提供了一种独特的化学方法,以超越材料光热特性来促进光驱动蒸汽产生。