Suppr超能文献

一种基于双参数超声特征的前列腺癌风险评估评分诊断系统。

A scoring diagnostic system based on biparametric ultrasound features for prostate cancer risk assessment.

作者信息

Liu Xiu, Zhou Hang, Xu Xinzhi, Li Ying, Hong Ruixia, Huang Kaifeng, Shi Hao, Li Fang

机构信息

Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.

Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China.

出版信息

Quant Imaging Med Surg. 2023 Jun 1;13(6):3703-3715. doi: 10.21037/qims-22-1354. Epub 2023 Apr 11.

Abstract

BACKGROUND

Ultrasound has advantages in prostate cancer (PCa) detection and biopsy guidance but lacks a comprehensive quantitative evaluation model with multiparametric features. We aimed to construct a biparametric ultrasound (BU) scoring system for PCa risk assessment and to provide an option for clinically significant prostate cancer (csPCa) detection.

METHODS

From January 2015 to December 2020, 392 consecutive patients at Chongqing University Cancer Hospital who underwent BU (grayscale, Doppler flow imaging, and contrast-enhanced ultrasound) and multiparametric magnetic resonance imaging (mpMRI) before biopsy were retrospectively enrolled in the training set to construct the scoring system. From January 2021 to May 2022, 166 consecutive patients at Chongqing University Cancer Hospital were retrospectively enrolled in the validation set. The ultrasound system was compared with mpMRI, and the gold standard was a biopsy. The primary outcome was the detection of csPCa in any area with a Gleason score (GS) ≥3+4, and the secondary outcome was defined as a GS ≥4+3 and/or maximum cancer core length (MCCL) ≥6 mm.

RESULTS

Malignant association features in the nonenhanced biparametric ultrasound (NEBU) scoring system included echogenicity, capsule, and gland asymmetrical vascularity. In the biparametric ultrasound scoring system (BUS), the feature of contrast agent arrival time was added. In the training set, the area under the curves (AUCs) of the NEBU scoring system, BUS, and mpMRI were 0.86 [95% confidence interval (CI): 0.82-0.90], 0.86 (95% CI: 0.82-0.90), and 0.86 (95% CI: 0.83-0.90), respectively (P>0.05). Similar results were also observed in the validation set, in which the areas under the curves were 0.89 (95% CI: 0.84-0.94), 0.90 (95% CI: 0.85-0.95), and 0.88 (95% CI: 0.82-0.94), respectively (P>0.05).

CONCLUSIONS

We constructed a BUS that showed efficacy and value for csPCa diagnosis as compared with mpMRI. However, in limited circumstances, the NEBU scoring system may also be an option.

摘要

背景

超声在前列腺癌(PCa)检测和活检引导方面具有优势,但缺乏具有多参数特征的综合定量评估模型。我们旨在构建一种双参数超声(BU)评分系统用于PCa风险评估,并为临床显著性前列腺癌(csPCa)检测提供一种选择。

方法

回顾性纳入2015年1月至2020年12月在重庆大学附属肿瘤医院连续392例活检前行BU(灰阶、多普勒血流成像和超声造影)及多参数磁共振成像(mpMRI)的患者作为训练集来构建评分系统。回顾性纳入2021年1月至2022年5月在重庆大学附属肿瘤医院连续166例患者作为验证集。将超声系统与mpMRI进行比较,金标准为活检。主要结局是检测任何Gleason评分(GS)≥3+4区域的csPCa,次要结局定义为GS≥4+3和/或最大癌芯长度(MCCL)≥6mm。

结果

非增强双参数超声(NEBU)评分系统中的恶性相关特征包括回声、包膜和腺体不对称血管。在双参数超声评分系统(BUS)中增加了造影剂到达时间特征。在训练集中,NEBU评分系统、BUS和mpMRI的曲线下面积(AUC)分别为0.86[95%置信区间(CI):0.82-0.90]、0.86(95%CI:0.82-0.90)和0.86(95%CI:0.83-0.90)(P>0.05)。在验证集中也观察到类似结果,其中曲线下面积分别为0.89(95%CI:0.84-0.94)、0.90(95%CI:0.85-0.95)和0.88(95%CI:0.82-0.94)(P>0.05)。

结论

我们构建的BUS与mpMRI相比,在csPCa诊断中显示出有效性和价值。然而,在有限情况下,NEBU评分系统也可能是一种选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/953d/10240001/0d1bbc2e0e1d/qims-13-06-3703-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验