Mayer Rulon, Turkbey Baris, Choyke Peter, Simone Charles B
University of Pennsylvania, Philadelphia, PA, USA.
OncoScore, Garrett Park, MD, USA.
Quant Imaging Med Surg. 2022 Jul;12(7):3844-3859. doi: 10.21037/qims-21-1092.
Radiologists currently subjectively examine multi-parametric magnetic resonance imaging (MP-MRI) to determine prostate tumor aggressiveness using the Prostate Imaging Reporting and Data System scoring system (PI-RADS). Recent studies showed that modified signal to clutter ratio (SCR), tumor volume, and eccentricity (elongation or roundness) of prostate tumors correlated with Gleason score (GS). No previous studies have combined the prostate tumor's shape, SCR, tumor volume, in order to predict potential tumor aggressiveness and GS.
MP-MRI (T1, T2, diffusion, dynamic contrast-enhanced images) were obtained, resized, translated, and stitched to form spatially registered multi-parametric cubes. Multi-parametric signatures that characterize prostate tumors were inserted into a target detection algorithm [adaptive cosine estimator (ACE)]. Pixel-based blobbing, and labeling were applied to the threshold ACE images. Eccentricity calculation used moments of inertia from the blobs. Tumor volume was computed by counting pixels within multi parametric MRI blobs and tumor outlines based on pathologist assessment of whole mount histology. Pathology assessment of GS was performed on whole mount prostatectomy. The covariance matrix and mean of normal tissue background was computed from normal prostate. Using signatures and normal tissue statistics, the z-score, noise corrected SCR [principal component (PC), modified regularization] from each patient was computed. Eccentricity, tumor volume, and SCR were fitted to GS. Analysis of variance assesses the relationship among the variables.
A multivariate analysis generated correlation coefficient (0.60 to 0.784) and P value (0.00741 to <0.0001) from fitting two sets of independent variates, namely, tumor eccentricity (the eccentricity for the largest blob, weighted average for the eccentricity) and SCR (removing 3 PCs, removing 4 PCs, modified regularization, and z-score) to GS. The eccentricity t-statistic exceeded the SCR t-statistic. The three-variable fit to GS using tumor volume (histology, MRI) yielded correlation coefficients ranging from 0.724 to 0.819 (P value <<0.05). Tumor volumes generated from histology yielded higher correlation coefficients than MRI volumes. Adding volume to eccentricity and SCR adds little improvement for fitting GS due to higher correlation coefficients among independent variables and little additional, independent information.
Combining prostate tumors eccentricity with SCR relatively highly correlates with GS.
放射科医生目前使用前列腺影像报告和数据系统(PI-RADS)评分系统对多参数磁共振成像(MP-MRI)进行主观检查,以确定前列腺肿瘤的侵袭性。最近的研究表明,前列腺肿瘤的改良信杂比(SCR)、肿瘤体积和偏心率(伸长率或圆度)与 Gleason 评分(GS)相关。以前没有研究将前列腺肿瘤的形状、SCR、肿瘤体积结合起来,以预测潜在的肿瘤侵袭性和 GS。
获取 MP-MRI(T1、T2、扩散、动态对比增强图像),调整大小、平移并拼接,以形成空间配准的多参数立方体。将表征前列腺肿瘤的多参数特征插入目标检测算法[自适应余弦估计器(ACE)]。基于像素的斑点分析和标记应用于阈值化的 ACE 图像。偏心率计算使用斑点的惯性矩。通过对多参数 MRI 斑点内的像素计数以及基于病理学家对全层组织学评估的肿瘤轮廓来计算肿瘤体积。对全层前列腺切除术标本进行 GS 的病理评估。从正常前列腺计算正常组织背景的协方差矩阵和均值。利用特征和正常组织统计数据,计算每位患者的 z 分数、噪声校正的 SCR[主成分(PC)、改良正则化]。将偏心率、肿瘤体积和 SCR 与 GS 进行拟合。方差分析评估变量之间的关系。
多变量分析通过将两组独立变量,即肿瘤偏心率(最大斑点的偏心率、偏心率的加权平均值)和 SCR(去除 3 个 PC、去除 4 个 PC、改良正则化和 z 分数)与 GS 进行拟合,得出相关系数(0.60 至 0.784)和 P 值(0.00741 至<0.0001)。偏心率 t 统计量超过 SCR t 统计量。使用肿瘤体积(组织学、MRI)对 GS 进行三变量拟合,得出的相关系数范围为 0.724 至 0.819(P 值<<0.05)。由组织学得出的肿瘤体积产生的相关系数高于 MRI 体积。由于自变量之间的相关性较高且几乎没有额外的独立信息,将体积添加到偏心率和 SCR 中对拟合 GS 的改善不大。
将前列腺肿瘤的偏心率与 SCR 相结合与 GS 具有较高的相关性。