Suppr超能文献

用于联合 MRI 序列超分辨率和缺失数据插补的统一混合变压器。

A unified hybrid transformer for joint MRI sequences super-resolution and missing data imputation.

机构信息

Key Laboratory of Biomedical Engineering of Hainan Province, the School of Biomedical Engineering, Hainan University, Haikou, People's Republic of China.

Department of Radiology, Hainan General Hospital, Haikou, People's Republic of China.

出版信息

Phys Med Biol. 2023 Jun 23;68(13). doi: 10.1088/1361-6560/acdc80.

Abstract

High-resolution multi-modal magnetic resonance imaging (MRI) is crucial in clinical practice for accurate diagnosis and treatment. However, challenges such as budget constraints, potential contrast agent deposition, and image corruption often limit the acquisition of multiple sequences from a single patient. Therefore, the development of novel methods to reconstruct under-sampled images and synthesize missing sequences is crucial for clinical and research applications.. In this paper, we propose a unified hybrid framework called SIFormer, which utilizes any available low-resolution MRI contrast configurations to complete super-resolution (SR) of poor-quality MR images and impute missing sequences simultaneously in one forward process. SIFormer consists of a hybrid generator and a convolution-based discriminator. The generator incorporates two key blocks. First, the dual branch attention block combines the long-range dependency building capability of the transformer with the high-frequency local information capture capability of the convolutional neural network in a channel-wise split manner. Second, we introduce a learnable gating adaptation multi-layer perception in the feed-forward block to optimize information transmission efficiently.. Comparative evaluations against six state-of-the-art methods demonstrate that SIFormer achieves enhanced quantitative performance and produces more visually pleasing results for image SR and synthesis tasks across multiple datasets.. Extensive experiments conducted on multi-center multi-contrast MRI datasets, including both healthy individuals and brain tumor patients, highlight the potential of our proposed method to serve as a valuable supplement to MRI sequence acquisition in clinical and research settings.

摘要

高分辨率多模态磁共振成像(MRI)在临床实践中对于准确诊断和治疗至关重要。然而,预算限制、潜在对比剂沉积和图像损坏等挑战常常限制了从单个患者中获取多个序列。因此,开发新的方法来重建欠采样图像并合成缺失序列对于临床和研究应用至关重要。

在本文中,我们提出了一种名为 SIFormer 的统一混合框架,该框架利用任何可用的低分辨率 MRI 对比配置,在一个正向过程中同时完成低质量 MRI 图像的超分辨率(SR)和缺失序列的插补。SIFormer 由一个混合生成器和一个基于卷积的鉴别器组成。生成器包含两个关键模块。首先,双分支注意力模块以通道分离的方式结合了变压器的长程依赖构建能力和卷积神经网络的高频局部信息捕获能力。其次,我们在前馈块中引入了一个可学习的门控自适应多层感知机,以有效地优化信息传输。

与六种最先进的方法进行的对比评估表明,SIFormer 在多个数据集的图像 SR 和合成任务中实现了增强的定量性能,并产生了更令人愉悦的视觉效果。在多中心多对比 MRI 数据集上进行的广泛实验,包括健康个体和脑肿瘤患者,突出了我们提出的方法在临床和研究环境中作为 MRI 序列采集的有价值补充的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验