Suppr超能文献

一模型统合之:用于缺失数据插补的多对比多尺度变换模型。

One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation.

出版信息

IEEE Trans Med Imaging. 2023 Sep;42(9):2577-2591. doi: 10.1109/TMI.2023.3261707. Epub 2023 Aug 31.

Abstract

Multi-contrast magnetic resonance imaging (MRI) is widely used in clinical practice as each contrast provides complementary information. However, the availability of each imaging contrast may vary amongst patients, which poses challenges to radiologists and automated image analysis algorithms. A general approach for tackling this problem is missing data imputation, which aims to synthesize the missing contrasts from existing ones. While several convolutional neural networks (CNN) based algorithms have been proposed, they suffer from the fundamental limitations of CNN models, such as the requirement for fixed numbers of input and output channels, the inability to capture long-range dependencies, and the lack of interpretability. In this work, we formulate missing data imputation as a sequence-to-sequence learning problem and propose a multi-contrast multi-scale Transformer (MMT), which can take any subset of input contrasts and synthesize those that are missing. MMT consists of a multi-scale Transformer encoder that builds hierarchical representations of inputs combined with a multi-scale Transformer decoder that generates the outputs in a coarse-to-fine fashion. The proposed multi-contrast Swin Transformer blocks can efficiently capture intra- and inter-contrast dependencies for accurate image synthesis. Moreover, MMT is inherently interpretable as it allows us to understand the importance of each input contrast in different regions by analyzing the in-built attention maps of Transformer blocks in the decoder. Extensive experiments on two large-scale multi-contrast MRI datasets demonstrate that MMT outperforms the state-of-the-art methods quantitatively and qualitatively.

摘要

多对比度磁共振成像(MRI)在临床实践中被广泛应用,因为每种对比都提供了互补的信息。然而,每种成像对比在不同患者中的可用性可能不同,这给放射科医生和自动图像分析算法带来了挑战。一种解决这个问题的通用方法是缺失数据插补,它旨在从现有数据中合成缺失的对比度。虽然已经提出了几种基于卷积神经网络(CNN)的算法,但它们存在 CNN 模型的基本限制,例如需要固定数量的输入和输出通道、无法捕获长距离依赖关系以及缺乏可解释性。在这项工作中,我们将缺失数据插补问题表述为序列到序列学习问题,并提出了一种多对比度多尺度 Transformer(MMT),它可以接受输入对比度的任意子集,并合成缺失的对比度。MMT 由一个多尺度 Transformer 编码器组成,该编码器结合了一个多尺度 Transformer 解码器,以粗到精的方式构建输入的分层表示并生成输出。所提出的多对比度 Swin Transformer 块可以有效地捕获内部和对比度之间的依赖关系,从而实现准确的图像合成。此外,MMT 本质上是可解释的,因为它允许我们通过分析解码器中 Transformer 块的内置注意力图来了解每个输入对比度在不同区域的重要性。在两个大规模多对比度 MRI 数据集上的广泛实验表明,MMT 在定量和定性上都优于最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c436/10543020/916555c4d8f9/nihms-1928732-f0001.jpg

相似文献

6
Dual encoder network with transformer-CNN for multi-organ segmentation.基于 Transformer-CNN 的双编码器网络的多器官分割。
Med Biol Eng Comput. 2023 Mar;61(3):661-671. doi: 10.1007/s11517-022-02723-9. Epub 2022 Dec 29.

引用本文的文献

6
CT synthesis with deep learning for MR-only radiotherapy planning: a review.基于深度学习的CT合成用于仅磁共振放疗计划:综述
Biomed Eng Lett. 2024 Sep 26;14(6):1259-1278. doi: 10.1007/s13534-024-00430-y. eCollection 2024 Nov.
7
Deep learning for accelerated and robust MRI reconstruction.深度学习在加速和稳健 MRI 重建中的应用。
MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23.
8
Transformers and large language models in healthcare: A review.医疗保健中的变压器和大型语言模型:综述。
Artif Intell Med. 2024 Aug;154:102900. doi: 10.1016/j.artmed.2024.102900. Epub 2024 Jun 5.
9
ChatGPT-based Biological and Psychological Data Imputation.基于ChatGPT的生物和心理数据插补
Meta Radiol. 2023 Nov;1(3). doi: 10.1016/j.metrad.2023.100034. Epub 2023 Nov 11.

本文引用的文献

3
ResViT: Residual Vision Transformers for Multimodal Medical Image Synthesis.ResViT:用于多模态医学图像合成的残差视觉转换器。
IEEE Trans Med Imaging. 2022 Oct;41(10):2598-2614. doi: 10.1109/TMI.2022.3167808. Epub 2022 Sep 30.
4
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers.基于零样本学习对抗 Transformer 的无监督 MRI 重建。
IEEE Trans Med Imaging. 2022 Jul;41(7):1747-1763. doi: 10.1109/TMI.2022.3147426. Epub 2022 Jun 30.
8
Overview of Multi-Modal Brain Tumor MR Image Segmentation.多模态脑肿瘤磁共振图像分割概述
Healthcare (Basel). 2021 Aug 16;9(8):1051. doi: 10.3390/healthcare9081051.
10
MR-contrast-aware image-to-image translations with generative adversarial networks.基于生成对抗网络的 MR 对比感知图像到图像翻译。
Int J Comput Assist Radiol Surg. 2021 Dec;16(12):2069-2078. doi: 10.1007/s11548-021-02433-x. Epub 2021 Jun 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验