Suppr超能文献

GTMNet:一种具有引导传输图的视觉转换器,用于单幅遥感图像去雾。

GTMNet: a vision transformer with guided transmission map for single remote sensing image dehazing.

机构信息

School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, Yunnan, China.

出版信息

Sci Rep. 2023 Jun 7;13(1):9222. doi: 10.1038/s41598-023-36149-6.

Abstract

Existing dehazing algorithms are not effective for remote sensing images (RSIs) with dense haze, and dehazed results are prone to over-enhancement, color distortion, and artifacts. To tackle these problems, we propose a model GTMNet based on convolutional neural networks (CNNs) and vision transformers (ViTs), combined with dark channel prior (DCP) to achieve good performance. Specifically, a spatial feature transform (SFT) layer is first used to smoothly introduce the guided transmission map (GTM) into the model, improving the ability of the network to estimate haze thickness. A strengthen-operate-subtract (SOS) boosted module is then added to refine the local features of the restored image. The framework of GTMNet is determined by adjusting the input of the SOS boosted module and the position of the SFT layer. On SateHaze1k dataset, we compare GTMNet with several classical dehazing algorithms. The results show that on sub-datasets of Moderate Fog and Thick Fog, the PSNR and SSIM of GTMNet-B are comparable to that of the state-of-the-art model Dehazeformer-L, with only 0.1 times of parameter quantity. In addition, our method is intuitively effective in improving the clarity and the details of dehazed images, which proves the usefulness and significance of using the prior GTM and the SOS boosted module in a single RSI dehazing.

摘要

现有的去雾算法对于密集雾的遥感图像(RSI)效果不佳,去雾结果容易出现过增强、颜色失真和伪影。为了解决这些问题,我们提出了一种基于卷积神经网络(CNNs)和视觉转换器(ViTs)的模型 GTMNet,结合暗通道先验(DCP)以实现良好的性能。具体来说,首先使用空间特征变换(SFT)层将引导传输图(GTM)平滑地引入模型中,提高网络估计雾厚的能力。然后添加强化操作-减法(SOS)增强模块来细化恢复图像的局部特征。GTMNet 的框架通过调整 SOS 增强模块的输入和 SFT 层的位置来确定。在 SateHaze1k 数据集上,我们将 GTMNet 与几种经典的去雾算法进行了比较。结果表明,在中度雾和浓雾子数据集上,GTMNet-B 的 PSNR 和 SSIM 与最先进的模型 Dehazeformer-L 相当,参数量仅为其的 0.1 倍。此外,我们的方法在提高去雾图像的清晰度和细节方面直观有效,这证明了在单个 RSI 去雾中使用先验 GTM 和 SOS 增强模块的有用性和意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39d7/10247807/110fa106a424/41598_2023_36149_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验