Suppr超能文献

从甲基化到髓鞘形成:慢性非活动脱髓鞘多发性硬化病变的表观基因组和转录组分析。

From methylation to myelination: epigenomic and transcriptomic profiling of chronic inactive demyelinated multiple sclerosis lesions.

机构信息

Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.

Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.

出版信息

Acta Neuropathol. 2023 Aug;146(2):283-299. doi: 10.1007/s00401-023-02596-8. Epub 2023 Jun 7.

Abstract

In the progressive phase of multiple sclerosis (MS), the hampered differentiation capacity of oligodendrocyte precursor cells (OPCs) eventually results in remyelination failure. We have previously shown that DNA methylation of Id2/Id4 is highly involved in OPC differentiation and remyelination. In this study, we took an unbiased approach by determining genome-wide DNA methylation patterns within chronically demyelinated MS lesions and investigated how certain epigenetic signatures relate to OPC differentiation capacity. We compared genome-wide DNA methylation and transcriptional profiles between chronically demyelinated MS lesions and matched normal-appearing white matter (NAWM), making use of post-mortem brain tissue (n = 9/group). DNA methylation differences that inversely correlated with mRNA expression of their corresponding genes were validated for their cell-type specificity in laser-captured OPCs using pyrosequencing. The CRISPR-dCas9-DNMT3a/TET1 system was used to epigenetically edit human-iPSC-derived oligodendrocytes to assess the effect on cellular differentiation. Our data show hypermethylation of CpGs within genes that cluster in gene ontologies related to myelination and axon ensheathment. Cell type-specific validation indicates a region-dependent hypermethylation of MBP, encoding for myelin basic protein, in OPCs obtained from white matter lesions compared to NAWM-derived OPCs. By altering the DNA methylation state of specific CpGs within the promotor region of MBP, using epigenetic editing, we show that cellular differentiation and myelination can be bidirectionally manipulated using the CRISPR-dCas9-DNMT3a/TET1 system in vitro. Our data indicate that OPCs within chronically demyelinated MS lesions acquire an inhibitory phenotype, which translates into hypermethylation of crucial myelination-related genes. Altering the epigenetic status of MBP can restore the differentiation capacity of OPCs and possibly boost (re)myelination.

摘要

在多发性硬化症(MS)的进展阶段,少突胶质前体细胞(OPC)的分化能力受损最终导致髓鞘修复失败。我们之前的研究表明,Id2/Id4 的 DNA 甲基化高度参与 OPC 分化和髓鞘修复。在这项研究中,我们采用了一种无偏的方法,确定了慢性脱髓鞘 MS 病变中的全基因组 DNA 甲基化模式,并研究了某些表观遗传特征与 OPC 分化能力的关系。我们比较了慢性脱髓鞘 MS 病变和匹配的正常外观白质(NAWM)之间的全基因组 DNA 甲基化和转录谱,利用死后脑组织(n = 9/组)。使用焦磷酸测序,对与相应基因的 mRNA 表达呈反比相关的 DNA 甲基化差异在激光捕获的 OPC 中进行了细胞类型特异性验证。使用 CRISPR-dCas9-DNMT3a/TET1 系统对人诱导多能干细胞衍生的少突胶质细胞进行表观遗传编辑,以评估对细胞分化的影响。我们的数据显示,与髓鞘形成和轴突包绕相关的基因本体论聚类的基因中的 CpG 呈超甲基化。细胞类型特异性验证表明,与 NAWM 衍生的 OPC 相比,来自白质病变的 OPC 中 MBP(编码髓鞘碱性蛋白)的特定区域依赖的超甲基化。通过改变 MBP 启动子区域内特定 CpG 的 DNA 甲基化状态,使用表观遗传编辑,我们表明,使用 CRISPR-dCas9-DNMT3a/TET1 系统在体外可以双向操纵细胞分化和髓鞘形成。我们的数据表明,慢性脱髓鞘 MS 病变中的 OPC 获得了抑制表型,这转化为与髓鞘形成相关的关键基因的超甲基化。改变 MBP 的表观遗传状态可以恢复 OPC 的分化能力,并可能促进(再)髓鞘形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e075/10328906/8006ccf2abbe/401_2023_2596_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验