Graduate Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA.
Graduate Program in Biology, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA.
Semin Cell Dev Biol. 2021 Aug;116:38-44. doi: 10.1016/j.semcdb.2020.09.012. Epub 2020 Oct 19.
The past decade has seen an important revision of the traditional concept of the role and function of glial cells. From "passive support" for neurons, oligodendrocyte lineage cells are now recognized as metabolic exchangers with neurons, a cellular interface with blood vessels and responders to gut-derived metabolites or changes in the social environment. In the developing brain, the differentiation of neonatal oligodendrocyte progenitors (nOPCs) is required for normal brain function. In adulthood, the differentiation of adult OPCs (aOPCs) serves an important role in learning, behavioral adaptation and response to myelin injury. Here, we propose the concept of OPCs as environmental biosensors, which "sense" chemical and physical stimuli over time and adjust to the new challenges by modifying their epigenome and consequent transcriptome. Because epigenetics defines the ability of the cell to "adapt" gene expression to changes in the environment, we propose a model of OPC differentiation resulting from time-dependent changes of the epigenomic landscape in response to declining mitogens, raising hormone levels, neuronal activity, changes in space constraints or stiffness of the extracellular matrix. We propose that the intrinsically different functional properties of aOPCs compared to nOPCs result from the accrual of "epigenetic memories" of distinct events, which are "recorded" in the nuclei of OPCs as histone and DNA marks, defining a "unique epigenomic landscape" over time.
过去十年,神经胶质细胞的作用和功能的传统观念发生了重要转变。少突胶质细胞谱系细胞不再仅仅是神经元的“被动支持者”,它们现在被认为是神经元的代谢交换器,是与血管的细胞界面,也是肠道来源的代谢物或社会环境变化的响应者。在发育中的大脑中,新生少突胶质前体细胞 (nOPC) 的分化对于正常的大脑功能是必需的。在成年期,成体少突胶质祖细胞 (aOPC) 的分化在学习、行为适应和对髓鞘损伤的反应中起着重要作用。在这里,我们提出了少突胶质前体细胞作为环境生物传感器的概念,它们可以“感知”随着时间的推移而发生的化学和物理刺激,并通过修饰其表观基因组和随后的转录组来适应新的挑战。由于表观遗传学定义了细胞适应环境变化时基因表达的能力,我们提出了一个少突胶质前体细胞分化的模型,该模型是由对减少的有丝分裂原、升高的激素水平、神经元活动、空间限制或细胞外基质硬度的反应,导致表观基因组景观随时间发生变化而产生的。我们提出,与 nOPC 相比,aOPC 的固有不同功能特性源于不同事件的“表观遗传记忆”的积累,这些“记忆”作为组蛋白和 DNA 标记被“记录”在少突胶质前体细胞的核中,随时间定义了一个“独特的表观基因组景观”。