Suppr超能文献

一种具有变权缓冲算子的新型分数阶离散灰色模型及其在可再生能源预测中的应用

A novel fractional discrete grey model with variable weight buffer operator and its applications in renewable energy prediction.

作者信息

Wang Yong, Chi Pei, Nie Rui, Ma Xin, Wu Wenqing, Guo Binghong

机构信息

School of Sciences, Southwest Petroleum University, Chengdu, 610500 Sichuan China.

School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang, 621010 Sichuan China.

出版信息

Soft comput. 2023;27(14):9321-9345. doi: 10.1007/s00500-023-08203-y. Epub 2023 Apr 21.

Abstract

With the continuous depletion of global fossil energy, optimizing the energy structure has become the focus of attention of all countries. With the support of policy and finance, renewable energy occupies an important position in the energy structure of the USA. Being able to predict the trend of renewable energy consumption in advance plays a vital role in economic development and policymaking. Aiming at the small and changeable annual data of renewable energy consumption in the USA, a fractional delay discrete model of variable weight buffer operator based on grey wolf optimizer is proposed in this paper. Firstly, the variable weight buffer operator method is used to preprocess the data, and then, a new model is constructed by using the discrete modeling method and the concept of fractional delay term. The parameter estimation and time response formula of the new model are deduced, and it is proved that the new model combined with the variable weight buffer operator satisfies the new information priority principle of the final modeling data. The grey wolf optimizer is used to optimize the order of the new model and the weight of the variable weight buffer operator. Based on the renewable energy consumption data of solar energy, total biomass energy and wind energy in the field of renewable energy, the grey prediction model is established. The results show that the model has better prediction accuracy, adaptability and stability than the other five models mentioned in this paper. According to the forecast results, the consumption of solar and wind energy in the USA will increase incrementally in the coming years, while the consumption of biomass will decrease year by year.

摘要

随着全球化石能源的不断枯竭,优化能源结构已成为各国关注的焦点。在政策和资金的支持下,可再生能源在美国能源结构中占据重要地位。提前预测可再生能源消费趋势对经济发展和政策制定起着至关重要的作用。针对美国可再生能源消费年度数据少且变化大的特点,本文提出了一种基于灰狼优化算法的变权缓冲算子分数阶延迟离散模型。首先,运用变权缓冲算子方法对数据进行预处理,然后利用离散建模方法和分数阶延迟项概念构建新模型。推导了新模型的参数估计和时间响应公式,证明了结合变权缓冲算子的新模型满足最终建模数据的新信息优先原则。利用灰狼优化算法对新模型的阶数和变权缓冲算子的权重进行优化。基于可再生能源领域太阳能、总生物质能和风能的消费数据,建立了灰色预测模型。结果表明,该模型比本文提及的其他五个模型具有更好的预测精度、适应性和稳定性。根据预测结果,未来几年美国太阳能和风能的消费量将逐年递增,而生物质能的消费量将逐年下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8b4/10119545/0e0c716a7059/500_2023_8203_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验