Hu Nan, Li Bo, Bai Ruiyu, Xie Kai, Chen Guimin
State Key Laboratory for Manufacturing Systems Engineering and Shaanxi Key Laboratory of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China.
Research (Wash D C). 2023 Apr 11;6:0116. doi: 10.34133/research.0116. eCollection 2023.
Miniature robots show great potential in exploring narrow and confined spaces to perform various tasks, but many applications are limited by the dependence of these robots on electrical or pneumatic tethers to power supplies outboard. Developing an onboard actuator that is small in size and powerful enough to carry all the components onboard is a major challenge to eliminate the need for a tether. Bistability can trigger a dramatic energy release during switching between the 2 stable states, thus providing a promising way to overcome the intrinsic limitation of insufficient power of small actuators. In this work, the antagonistic action between torsional deflection and bending deflection in a lamina emergent torsional joint is utilized to achieve bistability, yielding a buckling-free bistable design. The unique configuration of this bistable design enables integrating of a single bending electroactive artificial muscle in the structure to form a compact, self-switching bistable actuator. A low-voltage ionic polymer-metal composites artificial muscle is employed, yielding a bistable actuator capable of generating an instantaneous angular velocity exceeding 300 °/s by a 3.75-V voltage. Two untethered robotic demonstrations using the bistable actuator are presented, including a crawling robot (gross weight of 2.7 g, including actuator, battery, and on-board circuit) that can generate a maximum instantaneous velocity of 40 mm/s and a swimming robot equipped with a pair of origami-inspired paddles that swims breaststroke. The low-voltage bistable actuator shows potential for achieving autonomous motion of various fully untethered miniature robots.
微型机器人在探索狭窄和受限空间以执行各种任务方面显示出巨大潜力,但许多应用受到这些机器人对外部电源的电气或气动系绳的依赖的限制。开发一种尺寸小且功率足以承载所有机载组件的机载致动器是消除系绳需求的一项重大挑战。双稳态可以在两个稳定状态之间切换时触发巨大的能量释放,从而提供一种有前景的方法来克服小型致动器功率不足的固有局限性。在这项工作中,利用层状涌现扭转关节中的扭转挠度和弯曲挠度之间的拮抗作用来实现双稳态,从而产生无屈曲的双稳态设计。这种双稳态设计的独特配置能够在结构中集成单个弯曲电活性人工肌肉,以形成紧凑的、自切换的双稳态致动器。采用了一种低压离子聚合物 - 金属复合材料人工肌肉,产生了一种双稳态致动器,该致动器能够通过3.75伏电压产生超过300°/秒的瞬时角速度。展示了两个使用双稳态致动器的无系绳机器人演示,包括一个爬行机器人(总重2.7克,包括致动器、电池和机载电路),其能够产生最大40毫米/秒的瞬时速度,以及一个配备有一对受折纸启发的桨叶的蛙泳游泳机器人。这种低压双稳态致动器显示出实现各种完全无系绳微型机器人自主运动的潜力。
Research (Wash D C). 2023-4-11
Proc Natl Acad Sci U S A. 2018-5-15
Soft Robot. 2025-2
Soft Robot. 2024-8
Adv Mater. 2022-10
Microsyst Nanoeng. 2023-10-7
Nat Commun. 2025-7-24
Research (Wash D C). 2025-6-19
Adv Sci (Weinh). 2025-6
Research (Wash D C). 2023-3-17
Research (Wash D C). 2023-6-21
Biomimetics (Basel). 2025-1-16
Adv Sci (Weinh). 2024-9
Sci Adv. 2024-5-31
Research (Wash D C). 2024-5-3
Research (Wash D C). 2022-5-14
Sci Robot. 2022-5-25
Sci Adv. 2022-4
Nat Commun. 2021-8-20
Angew Chem Int Ed Engl. 2021-9-6
Sci Robot. 2017-9-27
Sci Robot. 2018-3-21
Sci Robot. 2019-2-13