Suppr超能文献

开发一种新颖的宫颈仿生曲折微流控系统,以实现高效、高质量的精子选择。

Development of a novel cervix-inspired tortuous microfluidic system for efficient, high-quality sperm selection.

机构信息

Micro Nano System Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11155-967, Tehran, Iran.

Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 19395-4644, Tehran, Iran.

出版信息

Lab Chip. 2023 Jun 28;23(13):3080-3091. doi: 10.1039/d3lc00037k.

Abstract

Microfluidic systems have been extensively studied in recent years as potential alternatives for problematic conventional methods of sperm selection. However, despite the widespread use of simple straight channels in these systems, the impact of channel geometry on selected sperm quality has not been thoroughly investigated. To explore this further, we designed and fabricated serpentine microchannels with different radii of curvature, inspired by the tortuous structure of the cervix. Our results showed that in the presence of gentle backflow, microfluidic channels with a 150 μm radius of curvature significantly enhanced the quality of selected sperms when compared to straight channels. Specifically, we observed significant improvements of 7% and 9% in total motility and progressive motility, respectively, as well as 13%, 18%, and 19% improvements in VCL, VAP, and VSL, respectively. Through careful observation of the process, we discovered a unique near-wall sperm migration pattern named boundary detachment-reattachment (BDR), that was observed exclusively in curved microchannels. This pattern, which is a direct consequence of the special serpentine geometry and sperm boundary-following characteristic, contributed to the superior selection performance when combined with a fluid backflow. After determining the best channel design, we fabricated a parallelized chip consisting of 85 microchannels capable of processing 0.5 ml of raw semen within 20 minutes. This chip outperformed conventional methods of swim-up and density gradient centrifugation (DGC) in terms of motility (9% and 25% improvements, respectively), reactive oxygen species (18% and 15% improvements, respectively), and DNA fragmentation index (14% improvement to DGC). Outstanding performance and advantages such as user-friendliness, rapid selection, and independence from centrifugation make our microfluidic system a prospective sperm selection tool in clinical applications.

摘要

近年来,微流控系统作为有问题的传统精子选择方法的潜在替代品得到了广泛研究。然而,尽管这些系统中广泛使用简单的直通道,但通道几何形状对所选精子质量的影响尚未得到彻底研究。为了进一步探索这一点,我们设计并制造了具有不同曲率半径的蛇形微通道,灵感来自于宫颈的曲折结构。我们的结果表明,在存在温和回流的情况下,与直通道相比,曲率半径为 150μm 的微流道显著提高了所选精子的质量。具体来说,我们观察到总活力和渐进性活力分别显著提高了 7%和 9%,VCL、VAP 和 VSL 分别提高了 13%、18%和 19%。通过仔细观察这个过程,我们发现了一种独特的近壁精子迁移模式,称为边界脱离-再附着(BDR),这种模式仅在弯曲的微通道中观察到。这种模式是由于特殊的蛇形几何形状和精子边界跟随特性的直接结果,与流体回流相结合时,有助于实现卓越的选择性能。在确定了最佳的通道设计之后,我们制造了一个由 85 个微通道组成的并行芯片,能够在 20 分钟内处理 0.5ml 的原始精液。与传统的泳动法和密度梯度离心法(DGC)相比,该芯片在活力方面(分别提高了 9%和 25%)、活性氧物质方面(分别提高了 18%和 15%)和 DNA 碎片化指数方面(提高了 14%)均表现出优异的性能。出色的性能和优势,如用户友好性、快速选择和无需离心,使我们的微流控系统成为临床应用中一种有前景的精子选择工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验