Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
Magn Reson Med. 2023 Sep;90(3):1086-1100. doi: 10.1002/mrm.29699. Epub 2023 Jun 8.
To allow for T1 mapping of the myocardium within 2.3 s for a 2D slice utilizing cardiac motion-corrected, model-based image reconstruction.
Golden radial data acquisition is continuously carried out for 2.3 s after an inversion pulse. In a first step, dynamic images are reconstructed which show both contrast changes due to T1 recovery and anatomical changes due to the heartbeat. An image registration algorithm with a signal model for T1 recovery is applied to estimate non-rigid cardiac motion. In a second step, estimated motion fields are applied during an iterative model-based T1 reconstruction. The approach was evaluated in numerical simulations, phantom experiments and in in-vivo scans in healthy volunteers.
The accuracy of cardiac motion estimation was shown in numerical simulations with an average motion field error of 0.7 ± 0.6 mm for a motion amplitude of 5.1 mm. The accuracy of T1 estimation was demonstrated in phantom experiments, with no significant difference (p = 0.13) in T1 estimated by the proposed approach compared to an inversion-recovery reference method. In vivo, the proposed approach yielded 1.3 × 1.3 mm T1 maps with no significant difference (p = 0.77) in T1 and SDs in comparison to a cardiac-gated approach requiring 16 s scan time (i.e., seven times longer than the proposed approach). Cardiac motion correction improved the precision of T1 maps, shown by a 40% reduced SD.
We have presented an approach that provides T1 maps of the myocardium in 2.3 s by utilizing both cardiac motion correction and model-based T1 reconstruction.
利用心脏运动校正的基于模型的图像重建,在 2.3s 内对 2D 切片进行心肌 T1 映射。
反转脉冲后连续进行 2.3s 的黄金径向数据采集。在第一步中,重建动态图像,显示由于 T1 恢复和心跳引起的解剖结构变化引起的对比度变化。应用具有 T1 恢复信号模型的图像配准算法来估计非刚性心脏运动。在第二步中,在迭代基于模型的 T1 重建过程中应用估计的运动场。该方法在数值模拟、体模实验和健康志愿者的体内扫描中进行了评估。
在数值模拟中,通过应用于运动幅度为 5.1mm 的平均运动场误差为 0.7±0.6mm 的运动场误差来证明心脏运动估计的准确性。在体模实验中,通过与反转恢复参考方法相比,提出的方法在 T1 估计方面没有显著差异(p=0.13),证明了 T1 估计的准确性。在体内,与需要 16s 扫描时间(即比提出的方法长七倍)的心脏门控方法相比,所提出的方法产生了 1.3×1.3mm T1 图谱,T1 和 SD 之间没有显著差异(p=0.77)。心脏运动校正通过降低 40%的 SD 提高了 T1 图谱的精度。
我们提出了一种利用心脏运动校正和基于模型的 T1 重建来在 2.3s 内提供心肌 T1 图谱的方法。