Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.
Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.
Adv Healthc Mater. 2023 Aug;12(20):e2300991. doi: 10.1002/adhm.202300991. Epub 2023 Jun 8.
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
当今的生物世界充满了无数经过数十亿年进化塑造的自然生物设计。揭示生物机体的构造规则为生物医学创造新材料和系统提供了可能。通过对生物机体的仔细研究,出现了几个概念:层次结构、模式重复、适应性和不可简化的复杂性。所有这些方面都必须加以解决,才能开发出具有逼真行为的变革性材料。本文重点介绍了近年来在开发用于组织再生和生物医学领域的变革性生物混合系统方面的进展。还讨论了计算模拟和数据驱动预测方面的进展。这些工具能够在进行制造之前对植入物设计和性能进行虚拟高通量筛选,从而减少仿生和生物混合结构的开发时间和成本。成像方法的不断进步也是这方面的一个重要组成部分,以便验证计算模型并实现纵向监测。最后,讨论了逼真的生物混合材料目前面临的挑战,包括可重复性、伦理考虑和转化。逼真材料的发展将开辟新的生物医学领域,未来,目前被视为科幻小说的东西可能会成为科学驱动的现实。