Suppr超能文献

提高脊柱外科手术分诊质量:使用机器学习预测手术可能性。

Improving Surgical Triage in Spine Clinic: Predicting Likelihood of Surgery Using Machine Learning.

机构信息

Department of Orthopaedic Surgery, Emory University, Atlanta, Georgia, USA.

Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

World Neurosurg. 2022 Jul;163:e192-e198. doi: 10.1016/j.wneu.2022.03.096. Epub 2022 Mar 26.

Abstract

BACKGROUND

Correctly triaging patients to a surgeon or a nonoperative provider is an important part of the referral process. Clinics typically triage new patients based on simple intake questions. This is time-consuming and does not incorporate objective data. Our goal was to use machine learning to more accurately screen surgical candidates seen in a spine clinic.

METHODS

Using questionnaire data and magnetic resonance imaging reports, a set of artificial neural networks was trained to predict whether a patient would be recommended for spine surgery. Questionnaire responses included demographics, chief complaint, and pain characteristics. The primary end point was the surgeon's determination of whether a patient was an operative candidate. Model accuracy in predicting this end point was assessed using a separate subset of patients.

RESULTS

The retrospective dataset included 1663 patients in cervical and lumbar cohorts. Questionnaire data were available for all participants, and magnetic resonance imaging reports were available for 242 patients. Within 6 months of initial evaluation, 717 (43.1%) patients were deemed surgical candidates by the surgeon. Our models predicted surgeons' recommendations with area under the curve scores of 0.686 for lumbar (positive predictive value 66%, negative predictive value 80%) and 0.821 for cervical (positive predictive value 83%, negative predictive value 85%) patients.

CONCLUSIONS

Our models used patient data to accurately predict whether patients will receive a surgical recommendation. The high negative predictive value demonstrates that this approach can reduce the burden of nonsurgical patients in surgery clinic without losing many surgical candidates. This could reduce unnecessary visits for patients, increase the proportion of operative candidates seen by surgeons, and improve quality of patient care.

摘要

背景

正确地将患者分诊给外科医生或非手术提供者是转诊过程的重要组成部分。诊所通常根据简单的入科问题对新患者进行分诊。这既耗时又不包含客观数据。我们的目标是使用机器学习更准确地筛选在脊柱诊所就诊的手术候选者。

方法

使用问卷数据和磁共振成像报告,训练了一组人工神经网络来预测患者是否需要接受脊柱手术。问卷回答包括人口统计学信息、主要诉求和疼痛特征。主要终点是外科医生确定患者是否为手术候选者。使用患者的另一个子集评估模型在预测该终点方面的准确性。

结果

回顾性数据集包括颈椎和腰椎队列中的 1663 名患者。所有参与者都有问卷数据,242 名患者有磁共振成像报告。在初次评估后的 6 个月内,717 名(43.1%)患者被外科医生认为是手术候选者。我们的模型预测外科医生的推荐,其在腰椎患者中的曲线下面积得分为 0.686(阳性预测值 66%,阴性预测值 80%),在颈椎患者中的曲线下面积得分为 0.821(阳性预测值 83%,阴性预测值 85%)。

结论

我们的模型使用患者数据准确预测患者是否会收到手术建议。高阴性预测值表明,这种方法可以在不失去许多手术候选者的情况下减少手术诊所中非手术患者的负担。这可以减少患者的不必要就诊,增加外科医生看到的手术候选者的比例,并提高患者的护理质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验