Suppr超能文献

基于多通道光电容积脉搏波和手指压力的注意力机制的深度学习血压估计。

Deep-learning-based blood pressure estimation using multi channel photoplethysmogram and finger pressure with attention mechanism.

机构信息

Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.

SAIT, Samsung Electronics, Advanced Sensor Lab, Suwon-si, Gyeonggi-do, 16677, Republic of Korea.

出版信息

Sci Rep. 2023 Jun 8;13(1):9311. doi: 10.1038/s41598-023-36068-6.

Abstract

Recently, several studies have proposed methods for measuring cuffless blood pressure (BP) using finger photoplethysmogram (PPG) signals. This study presents a new BP estimation system that measures PPG signals under progressive finger pressure, making the system relatively robust to errors caused by finger position when using the cuffless oscillometric method. To reduce errors caused by finger position, we developed a sensor that can simultaneously measure multi-channel PPG and force signals in a wide field of view (FOV). We propose a deep-learning-based algorithm that can learn to focus on the optimal PPG channel from multi channel PPG using an attention mechanism. The errors (ME ± STD) of the proposed multi channel system were 0.43±9.35 mmHg and 0.21 ± 7.72 mmHg for SBP and DBP, respectively. Through extensive experiments, we found a significant performance difference depending on the location of the PPG measurement in the BP estimation system using finger pressure.

摘要

最近,有几项研究提出了使用指部光体积描记图(PPG)信号测量无袖带血压(BP)的方法。本研究提出了一种新的 BP 估计系统,该系统通过渐进式指部压力测量 PPG 信号,使系统在使用无袖带振荡法时相对不受指部位置误差的影响。为了减少指部位置引起的误差,我们开发了一种传感器,该传感器可以在宽视场(FOV)中同时测量多通道 PPG 和力信号。我们提出了一种基于深度学习的算法,该算法可以使用注意力机制从多通道 PPG 中学习聚焦于最佳 PPG 通道。所提出的多通道系统的误差(ME±STD)分别为 SBP 和 DBP 的 0.43±9.35mmHg 和 0.21 ± 7.72mmHg。通过广泛的实验,我们发现使用手指压力的 BP 估计系统中 PPG 测量位置对性能有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba8d/10250382/0d787a8eaa7f/41598_2023_36068_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验