Suppr超能文献

一项关于用于早期精神分裂症和帕金森病性精神病分类的灰质形态计量学生物标志物的多中心研究。

A multicentre study on grey matter morphometric biomarkers for classifying early schizophrenia and parkinson's disease psychosis.

作者信息

Knolle Franziska, Arumugham Shyam S, Barker Roger A, Chee Michael W L, Justicia Azucena, Kamble Nitish, Lee Jimmy, Liu Siwei, Lenka Abhishek, Lewis Simon J G, Murray Graham K, Pal Pramod Kumar, Saini Jitender, Szeto Jennifer, Yadav Ravi, Zhou Juan H, Koch Kathrin

机构信息

Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.

Department of Psychiatry, University of Cambridge, Cambridge, UK.

出版信息

NPJ Parkinsons Dis. 2023 Jun 8;9(1):87. doi: 10.1038/s41531-023-00522-z.

Abstract

Psychotic symptoms occur in a majority of schizophrenia patients and in ~50% of all Parkinson's disease (PD) patients. Altered grey matter (GM) structure within several brain areas and networks may contribute to their pathogenesis. Little is known, however, about transdiagnostic similarities when psychotic symptoms occur in different disorders, such as in schizophrenia and PD. The present study investigated a large, multicenter sample containing 722 participants: 146 patients with first episode psychosis, FEP; 106 individuals in at-risk mental state for developing psychosis, ARMS; 145 healthy controls matching FEP and ARMS, Con-Psy; 92 PD patients with psychotic symptoms, PDP; 145 PD patients without psychotic symptoms, PDN; 88 healthy controls matching PDN and PDP, Con-PD. We applied source-based morphometry in association with receiver operating curves (ROC) analyses to identify common GM structural covariance networks (SCN) and investigated their accuracy in identifying the different patient groups. We assessed group-specific homogeneity and variability across the different networks and potential associations with clinical symptoms. SCN-extracted GM values differed significantly between FEP and Con-Psy, PDP and Con-PD, PDN and Con-PD, as well as PDN and PDP, indicating significant overall grey matter reductions in PD and early schizophrenia. ROC analyses showed that SCN-based classification algorithms allow good classification (AUC ~0.80) of FEP and Con-Psy, and fair performance (AUC ~0.72) when differentiating PDP from Con-PD. Importantly, the best performance was found in partly the same networks, including the thalamus. Alterations within selected SCNs may be related to the presence of psychotic symptoms in both early schizophrenia and PD psychosis, indicating some commonality of underlying mechanisms. Furthermore, results provide evidence that GM volume within specific SCNs may serve as a biomarker for identifying FEP and PDP.

摘要

大多数精神分裂症患者以及约50%的帕金森病(PD)患者会出现精神病性症状。多个脑区和神经网络中灰质(GM)结构的改变可能促成其发病机制。然而,对于不同疾病(如精神分裂症和PD)出现精神病性症状时的跨诊断相似性,我们知之甚少。本研究调查了一个包含722名参与者的大型多中心样本:146名首发精神病患者(FEP);106名处于精神病发病风险精神状态的个体(ARMS);145名与FEP和ARMS匹配的健康对照(Con-Psy);92名有精神病性症状的PD患者(PDP);145名无精神病性症状的PD患者(PDN);88名与PDN和PDP匹配的健康对照(Con-PD)。我们将基于源的形态测量法与受试者工作特征曲线(ROC)分析相结合,以识别常见的GM结构协方差网络(SCN),并研究其在识别不同患者组方面的准确性。我们评估了不同网络之间的组特异性同质性和变异性以及与临床症状的潜在关联。SCN提取的GM值在FEP与Con-Psy、PDP与Con-PD、PDN与Con-PD以及PDN与PDP之间存在显著差异,表明PD和早期精神分裂症患者的总体灰质有显著减少。ROC分析表明,基于SCN的分类算法对FEP和Con-Psy有良好的分类效果(AUC约为0.80),在区分PDP与Con-PD时表现中等(AUC约为0.72)。重要的是,最佳表现部分出现在相同的网络中,包括丘脑。选定SCN内的改变可能与早期精神分裂症和PD精神病中精神病性症状的存在有关,表明潜在机制存在一些共性。此外,研究结果提供了证据,表明特定SCN内的GM体积可能作为识别FEP和PDP的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/082a/10250419/5fc7019c25e7/41531_2023_522_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验