Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Mol Psychiatry. 2021 Dec;26(12):7719-7731. doi: 10.1038/s41380-021-01229-4. Epub 2021 Jul 28.
Reliable mapping of system-level individual differences is a critical first step toward precision medicine for complex disorders such as schizophrenia. Disrupted structural covariance indicates a system-level brain maturational disruption in schizophrenia. However, most studies examine structural covariance at the group level. This prevents subject-level inferences. Here, we introduce a Network Template Perturbation approach to construct individual differential structural covariance network (IDSCN) using regional gray-matter volume. IDSCN quantifies how structural covariance between two nodes in a patient deviates from the normative covariance in healthy subjects. We analyzed T1 images from 1287 subjects, including 107 first-episode (drug-naive) patients and 71 controls in the discovery datasets and established robustness in 213 first-episode (drug-naive), 294 chronic, 99 clinical high-risk patients, and 494 controls from the replication datasets. Patients with schizophrenia were highly variable in their altered structural covariance edges; the number of altered edges was related to severity of hallucinations. Despite this variability, a subset of covariance edges, including the left hippocampus-bilateral putamen/globus pallidus edges, clustered patients into two distinct subgroups with opposing changes in covariance compared to controls, and significant differences in their anxiety and depression scores. These subgroup differences were stable across all seven datasets with meaningful genetic associations and functional annotation for the affected edges. We conclude that the underlying physiology of affective symptoms in schizophrenia involves the hippocampus and putamen/pallidum, predates disease onset, and is sufficiently consistent to resolve morphological heterogeneity throughout the illness course. The two schizophrenia subgroups identified thus have implications for the nosology and clinical treatment.
可靠地映射系统水平的个体差异是迈向精神分裂症等复杂疾病精准医学的关键第一步。结构协变的中断表明精神分裂症存在系统水平的大脑成熟障碍。然而,大多数研究都是在群体水平上研究结构协变。这就阻止了个体水平的推断。在这里,我们引入了一种网络模板干扰方法,使用区域灰质体积构建个体差异结构协变网络(IDSCN)。IDSCN 量化了患者节点之间的结构协变与健康受试者的规范协变之间的偏差。我们分析了来自 1287 名受试者的 T1 图像,包括发现数据集的 107 名首发(未用药)患者和 71 名对照者,并在来自复制数据集的 213 名首发(未用药)、294 名慢性、99 名临床高危和 494 名对照者中建立了稳健性。精神分裂症患者的结构协变边缘变化非常大;改变的边缘数量与幻觉的严重程度有关。尽管存在这种变异性,但包括左侧海马体-双侧壳核/苍白球边缘在内的一组协变边缘将患者聚类为两个不同的亚组,与对照组相比,协变发生了相反的变化,且在焦虑和抑郁评分方面存在显著差异。这些亚组差异在所有七个数据集上都是稳定的,与受影响的边缘有意义的遗传关联和功能注释。我们得出结论,精神分裂症中情感症状的潜在生理学涉及海马体和壳核/苍白球,发病前就已存在,并且足够一致,可以解决整个疾病过程中的形态异质性。因此,确定的两个精神分裂症亚组对疾病分类和临床治疗具有重要意义。