Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
Eur Radiol. 2018 Aug;28(8):3296-3305. doi: 10.1007/s00330-018-5342-1. Epub 2018 Mar 12.
To identify disease-related spatial covariance patterns of grey matter volume as an aid in the classification of Parkinson's disease (PD).
Seventy structural covariance networks (SCNs) based on grey matter volume covariance patterns were defined using independent component analysis with T1-weighted structural MRI scans (discovery sample, 70 PD patients and 70 healthy controls). An image-based classifier was constructed from SCNs using a multiple logistic regression analysis with a leave-one-out cross-validation-based feature selection scheme. A validation sample (26 PD patients and 26 healthy controls) was further collected to evaluate the generalization ability of the constructed classifier.
In the discovery sample, 13 SCNs, including the cerebellum, anterior temporal poles, parahippocampal gyrus, parietal operculum, occipital lobes, supramarginal gyri, superior parietal lobes, paracingulate gyri and precentral gyri, had higher classification performance for PD. In the validation sample, the classifier had moderate generalization ability, with a mean sensitivity of 81%, specificity of 69% and overall accuracy of 75%. Furthermore, certain individual SCNs were also associated with disease severity.
Although not applicable for routine care at present, our results provide empirical evidence that disease-specific, large-scale structural networks can provide a foundation for the further improvement of diagnostic MRI in movement disorders.
• Disease-specific, large-scale SCNs can be identified from structural MRI. • A new network-based framework for PD classification is proposed. • An SCN-based classifier had moderate generalization ability in PD classification. • The selected SCNs provide valuable functional information regarding PD patients.
通过识别与疾病相关的灰质体积空间协变模式,辅助帕金森病(PD)的分类。
采用独立成分分析方法,对 70 例 PD 患者和 70 例健康对照者的 T1 加权结构 MRI 扫描数据进行分析,得到 70 个结构协变网络(SCN)。使用基于留一交叉验证的特征选择方案的多元逻辑回归分析,从 SCN 构建图像分类器。进一步收集验证样本(26 例 PD 患者和 26 例健康对照者),以评估构建分类器的泛化能力。
在发现样本中,13 个 SCN(包括小脑、前颞极、海马旁回、顶下小叶、枕叶、缘上回、顶叶上回、扣带回、中央前回)对 PD 的分类性能更高。在验证样本中,该分类器具有中等的泛化能力,平均敏感度为 81%,特异性为 69%,总准确率为 75%。此外,某些特定的 SCN 还与疾病严重程度相关。
尽管目前不适用于常规护理,但我们的研究结果提供了经验证据,表明疾病特异性的大规模结构网络可以为运动障碍的 MRI 诊断进一步提高提供基础。
可从结构 MRI 中识别出疾病特异性的大规模 SCN。
提出了一种新的基于 SCN 的 PD 分类框架。
基于 SCN 的分类器在 PD 分类中具有中等的泛化能力。
选择的 SCN 为 PD 患者提供了有价值的功能信息。