Suppr超能文献

基于多任务 U-Net 的大型鼠脑 MRI 数据库的自动关节颅骨剥离和分割。

Automated joint skull-stripping and segmentation with Multi-Task U-Net in large mouse brain MRI databases.

机构信息

Sapienza Università di Roma, Rome 00184, Italy; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome 00184, Italy; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70210, Finland.

Charles River Discovery Services, Kuopio, Finland.

出版信息

Neuroimage. 2021 Apr 1;229:117734. doi: 10.1016/j.neuroimage.2021.117734. Epub 2021 Jan 14.

Abstract

Skull-stripping and region segmentation are fundamental steps in preclinical magnetic resonance imaging (MRI) studies, and these common procedures are usually performed manually. We present Multi-task U-Net (MU-Net), a convolutional neural network designed to accomplish both tasks simultaneously. MU-Net achieved higher segmentation accuracy than state-of-the-art multi-atlas segmentation methods with an inference time of 0.35 s and no pre-processing requirements. We trained and validated MU-Net on 128 T2-weighted mouse MRI volumes as well as on the publicly available MRM NeAT dataset of 10 MRI volumes. We tested MU-Net with an unusually large dataset combining several independent studies consisting of 1782 mouse brain MRI volumes of both healthy and Huntington animals, and measured average Dice scores of 0.906 (striati), 0.937 (cortex), and 0.978 (brain mask). Further, we explored the effectiveness of our network in the presence of different architectural features, including skip connections and recently proposed framing connections, and the effects of the age range of the training set animals. These high evaluation scores demonstrate that MU-Net is a powerful tool for segmentation and skull-stripping, decreasing inter and intra-rater variability of manual segmentation. The MU-Net code and the trained model are publicly available at https://github.com/Hierakonpolis/MU-Net.

摘要

颅骨剥离和区域分割是临床前磁共振成像 (MRI) 研究的基本步骤,这些常见的步骤通常是手动完成的。我们提出了多任务 U-Net (MU-Net),这是一种卷积神经网络,旨在同时完成这两个任务。MU-Net 的分割精度高于最先进的多图谱分割方法,推理时间为 0.35 秒,并且不需要预处理。我们在 128 个 T2 加权小鼠 MRI 体积以及 10 个 MRI 体积的公开可用的 MRM NeAT 数据集上对 MU-Net 进行了训练和验证。我们使用一个异常大的数据集对 MU-Net 进行了测试,该数据集结合了几个独立的研究,包括 1782 个健康和亨廷顿动物的小鼠脑 MRI 体积,平均 Dice 评分分别为 0.906(纹状体)、0.937(皮质)和 0.978(脑掩模)。此外,我们还探索了我们的网络在具有不同架构特征(包括跳过连接和最近提出的框架连接)的情况下的有效性,以及训练集动物年龄范围的影响。这些高评估分数表明,MU-Net 是一种用于分割和颅骨剥离的强大工具,可以减少手动分割的组内和组间变异性。MU-Net 代码和训练好的模型可以在 https://github.com/Hierakonpolis/MU-Net 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验