Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America.
Abbott Nutrition, Discovery Research, Columbus, Ohio, United States of America.
PLoS One. 2023 May 11;18(5):e0284951. doi: 10.1371/journal.pone.0284951. eCollection 2023.
Magnetic resonance imaging is an important tool for characterizing volumetric changes of the piglet brain during development. Typically, an early step of an imaging analysis pipeline is brain extraction, or skull stripping. Brain extractions are usually performed manually; however, this approach is time-intensive and can lead to variation between brain extractions when multiple raters are used. Automated brain extractions are important for reducing the time required for analyses and improving the uniformity of the extractions. Here we demonstrate the use of Mask R-CNN, a Region-based Convolutional Neural Network (R-CNN), for automated brain extractions of piglet brains. We validate our approach using Nested Cross-Validation on six sets of training/validation data drawn from 32 pigs. Visual inspection of the extractions shows acceptable accuracy, Dice coefficients are in the range of 0.95-0.97, and Hausdorff Distance values in the range of 4.1-8.3 voxels. These results demonstrate that R-CNNs provide a viable tool for skull stripping of piglet brains.
磁共振成像是一种用于描述仔猪大脑在发育过程中体积变化的重要工具。通常,成像分析管道的早期步骤是大脑提取,或头骨剥离。大脑提取通常是手动进行的;然而,这种方法耗时且当使用多个评分者时可能导致大脑提取之间的差异。自动大脑提取对于减少分析所需的时间和提高提取的一致性非常重要。在这里,我们展示了使用 Mask R-CNN,一种基于区域的卷积神经网络 (R-CNN),用于自动提取仔猪大脑。我们使用从 32 头猪中抽取的六组训练/验证数据进行嵌套交叉验证来验证我们的方法。提取的视觉检查显示出可接受的准确性,Dice 系数在 0.95-0.97 范围内,Hausdorff 距离值在 4.1-8.3 体素范围内。这些结果表明,R-CNN 为仔猪大脑的头骨剥离提供了一种可行的工具。