Lee Yoo Jin, Abdelrahman Mustafa K, Kalairaj Manivannan Sivaperuman, Ware Taylor H
Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.
Small. 2023 Oct;19(41):e2302774. doi: 10.1002/smll.202302774. Epub 2023 Jun 9.
Materials that undergo reversible changes in form typically require top-down processing to program the microstructure of the material. As a result, it is difficult to program microscale, 3D shape-morphing materials that undergo non-uniaxial deformations. Here, a simple bottom-up fabrication approach to prepare bending microactuators is described. Spontaneous self-assembly of liquid crystal (LC) monomers with controlled chirality within 3D micromold results in a change in molecular orientation across thickness of the microstructure. As a result, heating induces bending in these microactuators. The concentration of chiral dopant is varied to adjust the chirality of the monomer mixture. Liquid crystal elastomer (LCE) microactuators doped with 0.05 wt% of chiral dopant produce needle-shaped actuators that bend from flat to an angle of 27.2 ± 11.3° at 180 °C. Higher concentrations of chiral dopant lead to actuators with reduced bending, and lower concentrations of chiral dopant lead to actuators with poorly controlled bending. Asymmetric molecular alignment inside 3D structure is confirmed by sectioning actuators. Arrays of microactuators that all bend in the same direction can be fabricated if symmetry of geometry of the microstructure is broken. It is envisioned that the new platform to synthesize microstructures can further be applied in soft robotics and biomedical devices.
通常,经历可逆形态变化的材料需要自上而下的加工来对材料的微观结构进行编程。因此,对经历非单轴变形的微尺度三维形状变形材料进行编程具有一定难度。在此,我们描述了一种制备弯曲微致动器的简单自下而上的制造方法。具有可控手性的液晶(LC)单体在三维微模具中自发自组装,导致微观结构厚度方向上的分子取向发生变化。结果,加热会使这些微致动器发生弯曲。通过改变手性掺杂剂的浓度来调节单体混合物的手性。掺杂0.05 wt%手性掺杂剂的液晶弹性体(LCE)微致动器在180°C时可产生从平面弯曲至27.2±11.3°角的针状致动器。较高浓度的手性掺杂剂会导致致动器弯曲程度降低,而较低浓度的手性掺杂剂会导致致动器弯曲控制不佳。通过对致动器进行切片,证实了三维结构内部的不对称分子排列。如果打破微观结构几何形状的对称性,就可以制造出所有朝同一方向弯曲的微致动器阵列。预计合成微观结构的新平台可进一步应用于软机器人技术和生物医学设备。