Li Shucong, Aizenberg Michael, Lerch Michael M, Aizenberg Joanna
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Acc Mater Res. 2023 Sep 22;4(12):1008-1019. doi: 10.1021/accountsmr.3c00101. eCollection 2023 Dec 22.
Synthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery. At the nanoscale, chemistry has taken strides in enabling molecularly fueled movement. Yet in between, at the microscale, top-down fabrication becomes cumbersome and expensive, while bottom-up chemical self-assembly and amplified molecular motion does not reach the necessary sophistication. Hence, new approaches that converge top-down and bottom-up methods and enable motional complexity at the microscale are urgently needed. Synthetic anisotropic materials (e.g., liquid crystalline elastomers, LCEs) with encoded molecular anisotropy that are shaped into arbitrary geometries by top-down fabrication promise new opportunities to implement controlled actuation at the microscale. In such materials, motional complexity is directly linked to the built-in molecular anisotropy that can be "activated" by external stimuli. So far, encoding the desired patterns of molecular directionality has relied mostly on either mechanical or surface alignment techniques, which do not allow the decoupling of molecular and geometric features, severely restricting achievable material shapes and thus limiting attainable actuation patterns, unless complex multimaterial constructs are fabricated. Electromagnetic fields have recently emerged as possible alternatives to provide 3D control over local anisotropy, independent of the geometry of a given 3D object. The combination of magnetic alignment and soft lithography, in particular, provides a powerful platform for the rapid, practical, and facile production of microscale soft actuators with field-defined local anisotropy. Recent work has established the feasibility of this approach with low magnetic field strengths (in the lower mT range) and comparably simple setups used for the fabrication of the microactuators, in which magnetic fields can be engineered through arrangement of permanent magnets. This workflow gives access to microstructures with unusual spatial patterning of molecular alignment and has enabled a multitude of nontrivial deformation types that would not be possible to program by any other means at the micron scale. A range of "activating" stimuli can be used to put these structures in motion, and the type of the trigger plays a key role too: directional and dynamic stimuli (such as light) make it possible to activate the patterned anisotropic material locally and transiently, which enables one to achieve and further program motional complexity and communication in microactuators. In this Account, we will discuss recent advances in magnetic alignment of molecular anisotropy and its use in soft lithography and related fabrication approaches to create LCE microactuators. We will examine how design choices-from the molecular to the fabrication and the operational levels-control and define the achievable LCE deformations. We then address the role of stimuli in realizing the motional complexity and how one can engineer feedback within and communication between microactuator arrays fabricated by soft lithography. Overall, we outline emerging strategies that make possible a completely new approach to designing for desired sets of motions of active, microscale objects.
能够进行可控运动的合成结构是开发适用于机器人技术、医疗保健和可持续自调节材料的新技术的关键组成部分。然而,对运动进行编程并非易事,尤其是在微观尺度上,这仍然是一个根本性的挑战。在宏观尺度上,运动可以通过传统的电动、气动或基于燃烧的机械来控制。在纳米尺度上,化学在实现分子驱动运动方面取得了进展。然而,在两者之间的微观尺度上,自上而下的制造变得繁琐且昂贵,而自下而上的化学自组装和放大的分子运动又达不到所需的精细程度。因此,迫切需要将自上而下和自下而上的方法结合起来并在微观尺度上实现运动复杂性的新方法。具有编码分子各向异性的合成各向异性材料(例如液晶弹性体,LCEs),通过自上而下的制造被加工成任意几何形状,有望为在微观尺度上实现可控驱动提供新机会。在这类材料中,运动复杂性直接与可以被外部刺激“激活”的内置分子各向异性相关联。到目前为止,对所需分子方向性模式进行编码主要依赖于机械或表面排列技术,这些技术不允许分子特征和几何特征解耦,严重限制了可实现的材料形状,从而限制了可实现的驱动模式,除非制造复杂的多材料结构。最近,电磁场已成为一种可能的替代方案,可独立于给定三维物体的几何形状对局部各向异性进行三维控制。特别是,磁排列和软光刻的结合为快速、实用且简便地生产具有场定义局部各向异性的微观尺度软致动器提供了一个强大的平台。最近的工作已经证明了这种方法在低磁场强度(在较低的毫特斯拉范围内)以及用于制造微致动器的相对简单的设置下的可行性,在这种设置中,可以通过永磁体的排列来设计磁场。这种工作流程能够获得具有不寻常分子排列空间图案的微观结构,并实现了多种在微米尺度上无法通过任何其他方式编程的非平凡变形类型。一系列“激活”刺激可用于使这些结构运动,并且触发类型也起着关键作用:定向和动态刺激(如光)使得能够局部且瞬时地激活图案化的各向异性材料,这使得人们能够在微致动器中实现并进一步编程运动复杂性和通信。在本综述中,我们将讨论分子各向异性磁排列及其在软光刻和相关制造方法中用于创建LCE微致动器的最新进展。我们将研究从分子到制造以及操作层面的设计选择如何控制和定义可实现的LCE变形。然后,我们将探讨刺激在实现运动复杂性方面的作用,以及如何在通过软光刻制造的微致动器阵列内部设计反馈以及实现它们之间的通信。总体而言,我们概述了一些新兴策略,这些策略使设计具有所需运动集的活性微观物体成为一种全新的方法。