Kuzel Zachary, Clement Arul, Tabrizi Mohsen, AboHussien Abdullah, Irla Sivakumar, Seresht Hassan Beheshti, Chun Youngjae, Tristram-Nagle Stephanie, Liu Qihan, Shankar M Ravi
Department of Industrial Engineering Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States.
Department of Bioengineering Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States.
ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43620-43632. doi: 10.1021/acsami.5c08503. Epub 2025 Jul 16.
Incorporating ionic species into the backbone of liquid crystalline elastomers offers a template for tailoring thermomechanical and electromechanical properties. Thermotropic ionene liquid crystalline elastomers (iLCEs) containing imidazolium-based cationic groups are capable of work-dense (∼14 J/kg), large-strain (>30%) actuation at modest temperatures (∼40 °C). Furthermore, the constitutive behavior of iLCE is modulated by ionic liquid (IL) dopants, which magnify the large strain deformability (>600%), modulate pressure-sensitive adhesion, and enable strain sensing over ∼100% strain at a constant stress defined by its soft elastic plateau. The nascent electronic conductivity of iLCE is sensitive to temperature, which unlocks a route for sustaining actuation cycles by gating the actinic stimulus using materially embodied sensing. iLCEs are also capable of athermal electromechanical actuation. Ion migration at low voltages (<3 V) in iLCEs with anisotropic molecular order produces bending strains that compete favorably against traditional ionic actuators. This responsiveness is modulated by the structure and alignment of the nematic axis with respect to the applied electrical fields. The ability to modulate the electromechanical coupling in iLCEs on top of the thermomechanical properties traditionally derived from liquid crystallinity enables a motif for assimilating an array of multifunctional properties.
将离子物种引入液晶弹性体的主链为定制热机械和机电性能提供了一个模板。含有咪唑基阳离子基团的热致紫罗碱液晶弹性体(iLCE)能够在适度温度(约40°C)下实现高功密度(约14 J/kg)、大应变(>30%)的驱动。此外,iLCE的本构行为受离子液体(IL)掺杂剂调节,这放大了大应变变形能力(>600%),调节了压敏粘附力,并能在由其软弹性平台定义的恒定应力下实现超过100%应变的应变传感。iLCE的初始电子电导率对温度敏感,这为通过利用材料体现的传感来控制光化刺激以维持驱动循环开辟了一条途径。iLCE还能够进行非热机电驱动。在具有各向异性分子排列的iLCE中,低电压(<3 V)下的离子迁移会产生弯曲应变,与传统离子致动器相比具有优势。这种响应性受向列轴相对于外加电场的结构和排列调节。在传统上源自液晶性的热机械性能之上调节iLCE中机电耦合的能力,为整合一系列多功能特性提供了一个模式。
ACS Appl Mater Interfaces. 2025-7-30
ACS Appl Mater Interfaces. 2022-6-2
J Mater Chem C Mater. 2025-6-20
Arch Ital Urol Androl. 2025-6-30
Angew Chem Int Ed Engl. 2025-7
Nanomaterials (Basel). 2025-3-14
Proc Natl Acad Sci U S A. 2024-10-22
Nature. 2024-7
ACS Appl Mater Interfaces. 2024-2-7
Soft Matter. 2024-1-17
Macromolecules. 2023-8-10
Nat Commun. 2023-7-4