Palanikumar L, Kalmouni Mona, Houhou Tatiana, Abdullah Osama, Ali Liaqat, Pasricha Renu, Thomas Sneha, Afzal Ahmed J, Barrera Francisco N, Magzoub Mazin
Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
bioRxiv. 2023 May 24:2023.05.22.541491. doi: 10.1101/2023.05.22.541491.
Photodynamic therapy (PDT) and photothermal therapy (PTT) have garnered considerable interest as non-invasive cancer treatment modalities. However, these approaches remain limited by low solubility, poor stability and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome these limitations, we have designed biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium and gadolinium) and bismuth selenide (NaYF :Yb/Er/Gd,Bi Se ) within a mesoporous silica shell that encapsulates a PS, Chlorin e6 (Ce6), in its pores. NaYF :Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites the Ce6 to generate cytotoxic reactive oxygen species (ROS), while the PTA Bi Se efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging (MRI) of the nanospheres. The mesoporous silica shell is coated with lipid/polyethylene glycol (DPPC/cholesterol/DSPE-PEG) to ensure retention of the encapsulated Ce6 and minimize interactions with serum proteins and macrophages that impede tumor targeting. Finally, the coat is functionalized with the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into cancer cells within the mildly acidic tumor microenvironment. Following uptake by cancer cells , NIR laser irradiation of the nanospheres caused substantial cytotoxicity due to ROS production and hyperthermia. The nanospheres facilitated tumor MRI and thermal imaging, and exhibited potent NIR laser light-induced antitumor effects via combined PDT and PTT, with no observable toxicity to healthy tissue, thereby substantially prolonging survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.
光动力疗法(PDT)和光热疗法(PTT)作为非侵入性癌症治疗方式已引起广泛关注。然而,这些方法仍受到许多常见光敏剂(PSs)和光热剂(PTAs)的低溶解度、稳定性差以及靶向效率低的限制。为克服这些限制,我们设计了具有成像能力的生物相容性和可生物降解的肿瘤靶向性上转换纳米球。这种多功能纳米球由掺杂镧系元素(镱、铒和钆)的氟化钇钠核以及包裹在介孔二氧化硅壳内的硒化铋(NaYF₄:Yb/Er/Gd,Bi₂Se₃)组成,介孔二氧化硅壳的孔隙中包封有PS氯e6(Ce6)。NaYF₄:Yb/Er将穿透性强的近红外(NIR)光转换为可见光,激发Ce6产生活细胞毒性的活性氧(ROS),而PTA Bi₂Se₃能有效地将吸收的NIR光转换为热。此外,钆使纳米球能够进行磁共振成像(MRI)。介孔二氧化硅壳涂有脂质/聚乙二醇(DPPC/胆固醇/DSPE-PEG),以确保包封的Ce6得以保留,并使与血清蛋白和巨噬细胞的相互作用最小化,而血清蛋白和巨噬细胞会阻碍肿瘤靶向。最后,该涂层用酸度触发理性膜(ATRAM)肽进行功能化,这促进纳米球在轻度酸性肿瘤微环境中特异性且高效地内化进入癌细胞。癌细胞摄取纳米球后,对纳米球进行近红外激光照射会因ROS产生和热疗而导致显著的细胞毒性。这些纳米球有助于肿瘤MRI和热成像,并通过联合PDT和PTT展现出强大的近红外激光诱导抗肿瘤效果,对健康组织无明显毒性,从而显著延长生存期。我们的结果表明,ATRAM功能化、脂质/聚乙二醇包覆而上转换介孔二氧化硅纳米球(ALUMSNs)提供了多模态诊断成像和靶向联合癌症治疗。